scholarly journals Summer weed species incidence in Western Australia varies between seasons

Weed Science ◽  
2019 ◽  
Vol 67 (05) ◽  
pp. 589-594
Author(s):  
Catherine Borger ◽  
Abul Hashem ◽  
Mario D’Antuono

AbstractAgronomic surveys of summer weed species are necessary to identify future research directions for optimal weed control, but usually focus on agricultural fields in a single season. To survey all species in the absence of weed control measures and determine species variability between seasons, a survey of 133 sites was conducted on roadsides adjoining agricultural fields throughout the Western Australian grainbelt in early 2015 and repeated in 2016 and 2017. The survey identified 144 species, but only 19 species were evident at more than 10% of sites. The most common species were weeping lovegrass [Eragrostis curvula (Schrad.) Nees], fleabane (Erigeron sp.), windmillgrass (Chloris truncata R. Br.), and wild radish (Raphanus raphanistrum L). The survey highlighted that weed species incidence varied between years. For example, C. truncata incidence was 30% in 2015 and 55% in 2016, while stinkgrass [Eragrostis cilianensis (All.) Vignolo ex Janch.] ranged from 20% in 2015 to 50% of sites in 2017. Conversely, density of individual species on the roadside was usually low, and density remained consistent between years. The survey highlighted multiple weed species that will require further research to optimize management programs. Raphanus raphanistrum and wild oat (Avena fatua L.) in particular are an issue for growers, as these species are highly detrimental winter weeds, and the survey demonstrates that they can also be common summer weeds. Control of these species with nonselective herbicides in summer as well as winter is likely to exacerbate the development of herbicide resistance.

2021 ◽  
Vol 12 ◽  
Author(s):  
Aniruddha Maity ◽  
Amrit Lamichaney ◽  
Dinesh Chandra Joshi ◽  
Ali Bajwa ◽  
Nithya Subramanian ◽  
...  

Seed shattering refers to the natural shedding of seeds when they ripe, a phenomenon typically observed in wild and weedy plant species. The timing and extent of this phenomenon varies considerably among plant species. Seed shattering is primarily a genetically controlled trait; however, it is significantly influenced by environmental conditions, management practices and their interactions, especially in agro-ecosystems. This trait is undesirable in domesticated crops where consistent efforts have been made to minimize it through conventional and molecular breeding approaches. However, this evolutionary trait serves as an important fitness and survival mechanism for most weeds that utilize it to ensure efficient dispersal of their seeds, paving the way for persistent soil seedbank development and sustained future populations. Weeds have continuously evolved variations in seed shattering as an adaptation under changing management regimes. High seed retention is common in many cropping weeds where weed maturity coincides with crop harvest, facilitating seed dispersal through harvesting operations, though some weeds have notoriously high seed shattering before crop harvest. However, high seed retention in some of the most problematic agricultural weed species such as annual ryegrass (Lolium rigidum), wild radish (Raphanus raphanistrum), and weedy amaranths (Amaranthus spp.) provides an opportunity to implement innovative weed management approaches such as harvest weed seed control, which aims at capturing and destroying weed seeds retained at crop harvest. The integration of such management options with other practices is important to avoid the rapid evolution of high seed shattering in target weed species. Advances in genetics and molecular biology have shown promise for reducing seed shattering in important crops, which could be exploited for manipulating seed shattering in weed species. Future research should focus on developing a better understanding of various seed shattering mechanisms in plants in relation to changing climatic and management regimes.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M.H. SIDDIQUI ◽  
S. KHALID ◽  
M. SHEHZAD ◽  
Z.A. SHAH ◽  
A. AHMAD

ABSTRACT: Weeds have indirect effects on crop plants. Crop development is affected by allelopathy from certain weed species. Allelochemicals from allelopathic weeds can disturb the root and shoot growth of emerging crop seedlings, as well as cause several other types of damage. A study was carried out to investigate the allelopathic potential of Parthenium hysterophorus for weed response in soybean. The experiment was laid out in Randomized Complete Block Design (RCBD) with split plot arrangements and replicated thrice. Sowing methods (broadcast and line sowing) were kept in the main plot and mulching treatments (surface mulching and soil incorporation) were kept in the sub-plots. Mulching of Parthenium hysterophorus was applied at the rate of 1.0 t ha-1, 2.5 t ha-1, 5 t ha-1 with control (no parthenium). Manual weed control was also used as treatments. The results revealed that significantly higher shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weigh, root dry weight, number of nodules per plant, nodules fresh and dry weight, number of branches, number of pods per plant, thousand seed weight biological yield, economic yield, dry matter yield and harvest index were recorded with the soil incorporation of Parthenium herbage at the rate of 2.5 t ha-1. Maximum weed density and weed dry biomass were recorded in control plots while weed control efficiency was seen greater in plots where Parthenium herbage was applied to surface at the rate of 5 t ha-1. The results suggested that the use of Parthenium hysterophorus herbage mulching can reduce infestation of weeds by its allelopathic effects and increase the yield of soybean under sub-humid agro-climatic conditions.


2019 ◽  
Vol 11 (6) ◽  
pp. 1653 ◽  
Author(s):  
Paola Deligios ◽  
Gianluca Carboni ◽  
Roberta Farci ◽  
Stefania Solinas ◽  
Luigi Ledda

Weed flora is considered harmful for crop growth and yield, but it is fundamental for preserving biodiversity in agroecosystems. Two three-year trials were conducted in Italy (two different sites) to assess the effect of six herbicide treatments on the weed flora structure of an oilseed rape crop. We applied metazachlor during the pre-emergence stage at 25%, 50%, 75%, and 100% of the labelled dose (M25, M50, M75, M100); trifluralin (during the first growing season); post-emergence treatment (PE); and a weedy control (W). Species richness, and diversity indices were used to characterize weed flora composition and to evaluate the effect of herbicide treatments on the considered variables. Results highlighted that the weed community is characterized by a higher diversity in underdosed than in M100 treated plots. Raphanus raphanistrum and Sinapis arvensis were the most common species in M75 and M100 treatments in both sites, while more weed species were detected in underdosed treatments and in weedy plots. The highest Shannon index values were observed in the underdosed treatments. In general, only a slightly similar trend was observed between sites, weed abundance and diversity being positively affected both by low-input herbicide management and by environmental factors (e.g., pedoclimatic situation and previous crop).


1970 ◽  
Vol 46 (6) ◽  
pp. 458-465 ◽  
Author(s):  
R. F. Sutton

Weeds commonly impair the growth of forest crop trees. Control measures rely increasingly on herbicides, large-scale use of which dates from the development of chlorophenoxyacetic herbicides in the 1940's. Weed control is not to kill weeds but to divert growth resources into crop trees. The herbicide tool becomes increasingly powerful and versatile because of new herbicides and new ways of using them. Of the organic herbicides, only phenols have high mammalian toxicity. It is highly improbable that problems could arise from use of herbicides in normal forestry operations. Herbicides make available to crop trees nutrients that would otherwise be taken up by weeds and those that are released by killed weeds. Control measures are especially important during plantation establishment. Grasses and herbs, and woody weeds are the main types of weed growth. Effective control measures may be devised for almost any situation.


Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 634-641 ◽  
Author(s):  
Jeff W. Barnes ◽  
Lawrence R. Oliver

Field and laboratory studies were conducted to evaluate herbicide efficacy, absorption, and translocation of cloransulam within broadleaf weeds. Control of morningglory species and velvetleaf with cloransulam was dependent upon application rate and timing. A reduced rate of cloransulam (9 g ai ha−1) was as effective as the labeled rate (18 g ha−1), when applications were targeted to small to midsize morningglory and velvetleaf. Prickly sida, hemp sesbania, and sicklepod were suppressed by cloransulam. Contour maps predicted accurately weed control for all species except tall morningglory. Cloransulam absorption and translocation provided some information about tolerance mechanisms. Susceptible species, entireleaf morningglory and velvetleaf, both rapidly absorbed14C-cloransulam. Absorption in the more tolerant velvetleaf was 20% lower than entireleaf morningglory at all harvest times. Absorption of14C-cloransulam in prickly sida was only 26% 6 h after treatment, and absorption did not increase with time. Differences in cloransulam absorption and translocation partially explained differences in susceptibility among some weed species but not others.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 754
Author(s):  
Jesaelen G. Moraes ◽  
Thomas R. Butts ◽  
Vitor M. Anunciato ◽  
Joe D. Luck ◽  
Wesley C. Hoffmann ◽  
...  

PPO-inhibiting herbicides in combination with glyphosate for postemergence applications is a common approach to manage glyphosate- and ALS-inhibitor-resistant weeds. PPO-inhibitors can reduce glyphosate translocation when applied in tank-mixtures, but adjuvants may be used to overcome this effect. Additionally, optimal droplet size may be affected by tank-mixtures of different herbicides and it can be crucial to herbicide efficacy. Field and greenhouse studies were conducted to investigate the impact of nozzle selection and adjuvants on weed control and interactions when applying PPO-inhibitors (fomesafen or lactofen) alone or in tank-mixture with glyphosate to five weed species using six nozzle types. Ultra-coarse droplets were just as effective as medium droplets regardless of the spray solution, but have a lower likelihood of off-target movement. Tank-mixtures applied were consistently antagonistic to common lambsquarters, horseweed, and Palmer amaranth. Only fomesafen was antagonistic to kochia whereas synergistic interactions were observed when glyphosate plus lactofen were applied in combination with COC, DRA + COC, or NIS. Separate applications are advisable with herbicide- and weed-specific situations to avoid antagonism, which is necessary to achieve optimum weed control and maintain the effectiveness of PPO-inhibitors. Future research should continue to look at these important interactions across a wide range of weed species.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 695-699 ◽  
Author(s):  
Steven M. Brown ◽  
James M. Chandler ◽  
John E. Morrison

A field experiment was conducted to evaluate weed control systems in a conservation tillage rotation of grain sorghum [Sorghum bicolor(L.) Moench.] – cotton (Gossypium hirsutumL.) – wheat (Triticum aestivumL.). Herbicide systems included fall and spring/summer inputs of high and low intensity. Tillage regimes were no-till (NT) and reduced-till (RT) systems; the latter included fall primary tillage followed by spring stale seedbed planting. Both tillage systems utilized controlled traffic lanes and wide, raised beds. Effective johnsongrass [Sorghum halepense(L.) Pers. # SORHA] control required intense herbicide inputs at one or both application periods, i.e., in the fall and/or spring/summer. Grain sorghum and cotton yields for the most intense weed control system, which included high inputs in both the fall and spring/summer, were not superior to systems that included high inputs in only one of the two application periods. Seedling johnsongrass emergence occurred before spring planting in RT (but not in NT) in 2 of 3 yr, and control measures were ineffective. After 3 yr, the predominant weeds were johnsongrass and browntop panicum (Panicum fasciculatumSw. # PANFA).


Weed Science ◽  
1987 ◽  
Vol 35 (4) ◽  
pp. 564-567 ◽  
Author(s):  
Dennis R. Cosgrove ◽  
Michael Barrett

The effects of weed control measures in established alfalfa (Medicago sativaL.) on forage yield and quality were investigated at three sites with varying alfalfa densities and weed populations. Herbicide treatments were 0.56 and 1.12 kg/ha metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] applied in fall or spring, respectively, 1.68 kg/ha pronamide [3,5-dichloro (N-1,1-dimethyl-2-propynyl)benzamide] applied in fall, and combinations of these treatments. First-harvest forage yields (weeds plus alfalfa) were either reduced or unchanged by herbicide treatments. Total forage yield was not altered by the herbicide treatments, but first-harvest and total alfalfa yield as well as first-harvest forage protein content were increased by several treatments, depending on stand density and weed pressure. Little effect was observed on in vitro digestible dry matter or acid detergent fiber content.


Sign in / Sign up

Export Citation Format

Share Document