scholarly journals NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tingting Niu ◽  
Charlotte De Rosny ◽  
Séverine Chautard ◽  
Amaury Rey ◽  
Danish Patoli ◽  
...  

AbstractNLRP3 controls the secretion of inflammatory cytokines IL-1β/18 and pyroptosis by assembling the inflammasome. Upon coordinated priming and activation stimuli, NLRP3 recruits NEK7 within hetero-oligomers that nucleate ASC and caspase-1 filaments, but the apical molecular mechanisms underlying inflammasome assembly remain elusive. Here we show that NEK7 recruitment to NLRP3 is controlled by the phosphorylation status of NLRP3 S803 located within the interaction surface, in which NLRP3 S803 is phosphorylated upon priming and later dephosphorylated upon activation. Phosphomimetic substitutions of S803 abolish NEK7 recruitment and inflammasome activity in macrophages in vitro and in vivo. In addition, NLRP3-NEK7 binding is also essential for NLRP3 deubiquitination by BRCC3 and subsequently inflammasome assembly, with NLRP3 phosphomimetic mutants showing enhanced ubiquitination and degradation than wildtype NLRP3. Finally, we identify CSNK1A1 as the kinase targeting NLRP3 S803. Our findings thus reveal NLRP3 S803 phosphorylation status as a druggable apical molecular mechanism controlling inflammasome assembly.

2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Shuai Huang ◽  
Bihui Cao ◽  
Jinling Zhang ◽  
Yunfei Feng ◽  
Lu Wang ◽  
...  

AbstractCucurbitacin B (CuB) is a widely available triterpenoid molecule that exhibits various biological activities. Previous studies on the anti-tumour mechanism of CuB have mostly focused on cell apoptosis, and research on the ferroptosis-inducing effect has rarely been reported. Herein, we first discovered the excellent cytotoxicity of CuB towards human nasopharyngeal carcinoma cells and elucidated its potential ferroptosis-inducing mechanisms. Morphology alterations of mitochondrial ultrastructure, as observed via transmission electron microscopy, showed that CuB-treated cells undergo ferroptosis. CuB caused intracellular accumulation of iron ions and depletion of glutathione. Detailed molecular mechanism investigation confirmed that CuB both induced widespread lipid peroxidation and downregulated the expression of GPX4, ultimately initiating a multipronged mechanism of ferroptosis. Furthermore, CuB exhibited anti-tumour effects in vitro by inhibiting cellular microtubule polymerization, arresting cell cycle and suppressing migration and invasion. Finally, CuB significantly inhibited tumour progression without causing obvious side effects in vivo. Altogether, our study highlighted the therapeutic potential of CuB as a ferroptosis-inducing agent for nasopharyngeal cancer, and it provided valuable insights for developing effective anti-tumour agents with novel molecular mechanisms derived from natural products.


2018 ◽  
Vol 50 (4) ◽  
pp. 1230-1244 ◽  
Author(s):  
Fan Yang ◽  
Ying Qin ◽  
Yueqiu Wang ◽  
Anqi Li ◽  
Jie Lv ◽  
...  

Background/Aims: Diabetic cardiomyopathy (DCM) is a common complication of diabetes and can cause heart failure, arrhythmia and sudden death. The pathogenesis of DCM includes altered metabolism, mitochondrial dysfunction, oxidative stress, inflammation, cell death and extracellular matrix remodeling. Recently, pyroptosis, a type of programmed cell death related to inflammation, was proven to be activated in DCM. However, the molecular mechanisms underlying pyroptosis in DCM remain elusive. The long non-coding RNA (lncRNA) Kcnq1ot1 participates in many cardiovascular diseases. This study aims to clarify whether Kcnq1ot1 affects cardiac pyroptosis in DCM. Methods: AC16 cells and primary cardiomyocytes were incubated with 5.5 and 50 mmol/L glucose. Diabetic mice were induced with streptozotocin (STZ). Kcnq1ot1 was silenced both in vitro and in vivo. qRT-PCR was used to detect the expression level of Kcnq1ot1. Immunofluorescence, qRT-PCR and western blot analyses were used to detect the degree of pyroptosis. Echocardiography, hematoxylin and eosin staining, and Masson’s trichrome staining were used to detect the cardiac function and morphology in mice. Cell death and function were detected using TUNEL staining, immunofluorescence staining and Ca2+ measurements. Results: The expression of Kcnq1ot1 was increased in patients with diabetes, high glucose-induced cardiomyocytes and diabetic mouse cardiac tissue. Silencing Kcnq1ot1 alleviated pyroptosis by targeting miR-214-3p and caspase-1. Furthermore, silencing Kcnq1ot1 reduced cell death, cytoskeletal structure abnormalities and calcium overload in vitro and improved cardiac function and morphology in vivo. Conclusion: Kcnq1ot1 is overexpressed in DCM, and silencing Kcnq1ot1 inhibits pyroptosis by influencing miR-214-3p and caspase-1 expression. We clarified for the first time that Kcnq1ot1 could be a new therapeutic target for DCM.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Feng Li ◽  
Tingting Lu ◽  
Dongmei Liu ◽  
Chong Zhang ◽  
Yonghui Zhang ◽  
...  

AbstractProstate cancer (PCA) is one of the most common male genitourinary tumors. However, the molecular mechanisms involved in the occurrence and progression of PCA have not been fully clarified. The present study aimed to investigate the biological function and molecular mechanism of the nuclear receptor peroxisome proliferator-activated receptor gamma 2 (PPARG2) in PCA. Our results revealed that PPARG2 was downregulated in PCA, and overexpression of PPARG2 inhibited cell migration, colony formation, invasion and induced cell cycle arrest of PCA cells in vitro. In addition, PPARG2 overexpression modulated the activation of the Akt signaling pathway, as well as inhibited tumor growth in vivo. Moreover, mechanistic analysis revealed that PPARG2 overexpression induced increased expression level of miR-200b-3p, which targeted 3′ UTR of the downstream targets DNMT3A/3B, and facilitated interaction with demethylated AKAP12 gene promoter and suppressed cell proliferation in PCA. Our findings provided the first evidence for a novel PPARG2-AKAP12 axis mediated epigenetic regulatory network. The study identified a molecular mechanism involving an epigenetic modification that could be possibly targeted as an antitumoral strategy against prostate cancer.


2020 ◽  
Vol 21 (2) ◽  
pp. 465 ◽  
Author(s):  
Yun Gao ◽  
Dezhen Tu ◽  
Ru Yang ◽  
Chun-Hsien Chu ◽  
Jau-Shyong Hong ◽  
...  

Chronic neuroinflammation contributes to the pathogenesis of Parkinson’s disease (PD). However, cellular and molecular mechanisms by which chronic neuroinflammation is formed and maintained remain elusive. This study aimed to explore detailed mechanisms by which anti-inflammatory cytokine interleukin-10 (IL-10) prevented chronic neuroinflammation and neurodegeneration. At 24 h after an intranigral injection of lipopolysaccharide (LPS), levels of NLRP3, pro-caspase-1, pro-IL-1β, active caspase-1, and mature IL-1β in the midbrain were much higher in IL-10−/− mice than wildtype mice. Mechanistically, IL-10−/− microglia produced more intracellular reactive oxygen species (iROS) and showed more profound activation of NADPH oxidase (NOX2) than wildtype microglia. Meanwhile, suppression of NOX2-derived iROS production blocked LPS-elicited caspase-1 activation and IL-1β maturation in IL-10−/− microglia in vitro and in vivo. One month after intranigral LPS injection, IL-10−/− mice revealed more profound microglial activation and dopaminergic neurodegeneration in the substantia nigra than wildtype mice. Importantly, such PD-like pathological changes were prevented by IL-1β neutralization. Collectively, IL-10 inhibited LPS-elicited production of NOX2-derived iROS thereby suppressing synthesis of NLRP3, pro-caspase-1 and pro-IL-1β and their activation and cleavage. By this mechanism, IL-10 prevented chronic neuroinflammation and neurodegeneration. This study suggested boosting anti-inflammatory effects of IL-10 and suppressing NLRP3 inflammasome activation could be beneficial for PD treatment.


2018 ◽  
Vol 38 (2) ◽  
Author(s):  
Yunlong Bai ◽  
Xi Sun ◽  
Qun Chu ◽  
Anqi Li ◽  
Ying Qin ◽  
...  

Cardiac hypertrophy is a compensatory response to stress or stimuli, which results in arrhythmia and heart failure. Although multiple molecular mechanisms have been identified, cardiac hypertrophy is still difficult to treat. Pyroptosis is a caspase-1-dependent pro-inflammatory programmed cell death. Caspase-1 is involved in various types of diseases, including hepatic injury, cancers, and diabetes-related complications. However, the exact role of caspase-1 in cardiac hypertrophy is yet to be discovered. The present study aimed to explore the possible role of caspase-1 in pathogenesis of cardiac hypertrophy. We established cardiac hypertrophy models both in vivo and in vitro to detect the expression of caspase-1 and interleukin-1β (IL-1β). The results showed that caspase-1 and IL-1β expression levels were significantly up-regulated during cardiac hypertrophy. Subsequently, caspase-1 inhibitor was co-administered with angiotensin II (Ang II) in cardiomyocytes to observe whether it could attenuate cardiac hypertrophy. Results showed that caspase-1 attenuated the pro-hypertrophic effect of Ang II, which was related to the down-regulation of caspase-1 and IL-1β. In conclusion, our results provide a novel evidence that caspase-1 mediated pyroptosis is involved in cardiac hypertrophy, and the inhibition of caspase-1 will offer a therapeutic potential against cardiac hypertrophy.


2019 ◽  
Vol 26 (25) ◽  
pp. 4799-4831 ◽  
Author(s):  
Jiahua Cui ◽  
Xiaoyang Liu ◽  
Larry M.C. Chow

P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhenghui Cheng ◽  
Yawen Zhang ◽  
Yinchao Tian ◽  
Yuhan Chen ◽  
Fei Ding ◽  
...  

Abstract Background Schwann cells (SCs) play a crucial role in the repair of peripheral nerves. This is due to their ability to proliferate, migrate, and provide trophic support to axon regrowth. During peripheral nerve injury, SCs de-differentiate and reprogram to gain the ability to repair nerves. Cysteine-rich 61 (Cyr61/CCN1) is a member of the CCN family of matrix cell proteins and have been reported to be abundant in the secretome of repair mediating SCs. In this study we investigate the function of Cyr61 in SCs. Results We observed Cyr61 was expressed both in vivo and in vitro. The promoting effect of Cyr61 on SC proliferation and migration was through autocrine and paracrine mechanisms. SCs expressed αvβ3 integrin and the effect of Cyr61 on SC proliferation and migration could be blocked via αvβ3 integrin. Cyr61 could influence c-Jun protein expression in cultured SCs. Conclusions In this study, we found that Cyr61 promotes SC proliferation and migration via αvβ3 integrin and regulates c-Jun expression. Our study contributes to the understanding of cellular and molecular mechanisms underlying SC’s function during nerve injury, and thus, may facilitate the regeneration of peripheral nerves after injury.


Sign in / Sign up

Export Citation Format

Share Document