scholarly journals Intracellular delivery of protein drugs with an autonomously lysing bacterial system reduces tumor growth and metastases

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vishnu Raman ◽  
Nele Van Dessel ◽  
Christopher L. Hall ◽  
Victoria E. Wetherby ◽  
Samantha A. Whitney ◽  
...  

AbstractCritical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.

2020 ◽  
Vol 20 (4) ◽  
pp. 486-494
Author(s):  
Mohamed A. El-Desouky ◽  
Abdelgawad A. Fahmi ◽  
Ibrahim Y. Abdelkader ◽  
Karima M. Nasraldin

Background: Amygdalin (Vitamin B-17) is a naturally occurring vitamin found in the seeds of the fruits of Prunus Rosacea family including apricot, bitter almond, cherry, and peach. Objective: The purpose of this study was to examine the effect of amygdalin with and without zinc on hepatocellular carcinoma (HepG2) cell line. Methods: MTT assay was used to evaluate the cytotoxicity of amygdalin without zinc, amygdalin + 20μmol zinc, and amygdalin + 800μmol zinc on HepG2 cell lines. The cell cycle distribution assay was determined by flow cytometry. Apoptosis was confirmed by Annexin V-FITC/PI staining assay. Moreover, the pathway of apoptosis was determined by the percentage of change in the mean levels of P53, Bcl2, Bax, cytochrome c, and caspase-3. Results: Amygdalin without zinc showed strong anti-HepG2 activity. Furthermore, HepG2 cell lines treatment with amygdalin + 20μmol zinc and amygdalin + 800μmol zinc showed a highly significant apoptotic effect than the effect of amygdalin without zinc. Amygdalin treatment induced cell cycle arrest at G2/M and increased the levels of P53, Bax, cytochrome c, and caspase-3 significantly, while it decreased the level of anti-apoptotic Bcl2. Conclusion: Amygdalin is a natural anti-cancer agent, which can be used for the treatment of hepatocellular carcinoma. It promotes apoptosis via the intrinsic cell death pathway (the mitochondria-initiated pathway) and cell cycle arrest at G/M. The potency of amygdalin in HepG2 treatment increased significantly by the addition of zinc.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Juyoung Kim ◽  
Kyung Hee Jung ◽  
Hyung Won Ryu ◽  
Doo-Young Kim ◽  
Sei-Ryang Oh ◽  
...  

Xanthium strumarium (XS) has been traditionally used as a medicinal herb for treating inflammatory diseases, such as appendicitis, chronic bronchitis, rheumatism, and rhinitis. In this study, we yielded ethanol extracts from XS and investigated whether they could inhibit the progression of hepatocellular carcinoma (HCC) and its underlying mechanism. The XS-5 and XS-6 extracts dose-dependently inhibited the growth and proliferation in HCC cell lines. The apoptotic effects of them were observed via increased levels of cleaved caspase-3 and cleaved PARP, as well as elevated numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling- (TUNEL-) positive apoptotic cells. They also decreased XIAP and Mcl-1 expression via loss of mitochondrial membrane potential. Additionally, they inhibited the invasion and migration of HCC cells. In an ex vivo model, the extracts significantly inhibited tumor cell growth and induced apoptosis by increasing the expression of the cleaved caspase-3. A mechanistic study revealed that they effectively suppressed PI3K/AKT/mTOR signaling pathways in HCC cells. Taken together, our findings demonstrate that they could efficiently not only induce apoptosis but also inhibit cell growth, migration, and invasion of human HCC cells by blocking the PI3K/AKT/mTOR pathway. We suggest XS-5 and XS-6 as novel natural anti-HCC agents.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
JiangSheng Zhao ◽  
GuoFeng Chen ◽  
Jingqi Li ◽  
Shiqi Liu ◽  
Quan Jin ◽  
...  

Abstract Background PR55α plays important roles in oncogenesis and progression of numerous malignancies. However, its role in hepatocellular carcinoma (HCC) is unclear. This study aims to characterize the functions of PR55α in HCC. Methods PR55α expressions in HCC tissues and paired healthy liver samples were evaluated using Western blot and tissue microarray immunohistochemistry. We knocked down the expression of PR55α in SMMC-7721 and LM3 cell lines via small interfering and lentivirus. In vitro cell counting, colony formation, migration and invasion assays were performed along with in vivo xenograft implantation and lung metastases experiments. The potential mechanisms involving target signal pathways were investigated by RNA-sequencing. Results PR55α expression level was suppressed in HCC tissues in comparison to healthy liver samples. Decreased PR55α levels were correlated with poorer prognosis (P = 0.0059). Knockdown of PR55α significantly promoted cell proliferation and migration, induced repression of the cell cycle progression and apoptosis in vitro while accelerating in vivo HCC growth and metastasis. Mechanistic analysis indicated that PR55α silencing was involved with MAPK/AKT signal pathway activation and resulted in increased phosphorylation of both AKT and ERK1/2. Conclusions This study identifies PR55α to be a candidate novel therapeutic target in the treatment of HCC.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 749
Author(s):  
Shinya Okubo ◽  
Tomoe Ohta ◽  
Yukihiro Shoyama ◽  
Takuhiro Uto

Our preliminary screening identified an extract from the rhizome of Dioscorea tokoro, which strongly suppressed the proliferation of HepG2 hepatocellular carcinoma cells and inhibited autophagy. This study aimed to isolate active compounds from the rhizome of D. tokoro that exert antiproliferative effects and inhibit autophagy. The bioassay-guided fractionation of the active fraction led to the isolation of two spirostan-type steroidal saponins, dioscin (1) and yamogenin 3-O-α-l-rhamnopyranosyl (1→4)-O-α-l-rhamnopyranosyl(1→2)-β-d-glucopyranoside (2), and the frostane-type steroidal saponin protodioscin (3) from the n-BuOH fraction. Furthermore, acid hydrolysis of 1 and 2 produced the aglycones diosgenin (4) and yamogenin (5), respectively. Compounds 1–5 suppressed proliferation of HepG2 cells. The analysis of structure-activity relationships indicated that the 25(R)-conformation, structures with a sugar moiety, and the spirostan-type aglycone moiety contributed to antiproliferative activity. Analysis of autophagy-related proteins demonstrated that 1–3 clearly increased the levels of both LC3-II and p62, implying that 1–3 deregulate the autophagic pathway by blocking autophagic flux, which results in p62 and LC3-II accumulation. In contrast, 1–3 did not significantly affect caspase-3 activation and PARP cleavage, suggesting that the antiproliferative activity of 1–3 occurred independently of caspase-3-mediated apoptosis. In summary, our study showed that 1–3, active compounds in the rhizome of D. tokoro, suppressed cell proliferation and autophagy, and might be potential agents for autophagy research and cancer chemoprevention.


2021 ◽  
pp. 096032712110084
Author(s):  
AM Kabel ◽  
HH Arab ◽  
MA Abd Elmaaboud

Hepatocellular carcinoma (HCC) is the most common form of liver malignancies worldwide. Alogliptin is an anti-diabetic that may have effective anticancer properties against many types of malignancies. Taxifolin is a flavonoid that has potent antioxidant, and anti-inflammatory properties. The objective of this study was to explore the impact of alogliptin and/or taxifolin on diethyl nitrosamine-induced HCC in rats. One hundred male Wistar rats were divided into five equal groups as follows: Control; HCC; HCC + Alogliptin; HCC + Taxifolin; and HCC + Alogliptin + Taxifolin group. The survival rate, liver function tests, tissue antioxidant enzymes, malondialdehyde (MDA), nuclear factor (erythroid derived 2)-like 2 (Nrf2), transforming growth factor beta 1 (TGF-β1), interleukin 1 alpha (IL-1α), and toll-like receptor 4 (TLR4) were measured. Also, hepatic caspase 3, caspase 9, beclin-1, and c-Jun NH2-terminal kinase (JNK) in addition to serum alpha-fetoprotein (AFP) and α-L-Fucosidase (AFU) were assessed. Specimens of the liver were subjected to histopathological examination. Alogliptin and/or taxifolin induced significant improvement of liver function tests with significant increase in the survival rate, tissue antioxidant enzymes, Nrf2, caspase 3, caspase 9, Beclin-1 and JNK activities associated with significant decrease in serum AFP and AFU, tissue MDA, TGF-β1, IL-1α and TLR4 expression compared to HCC group. These results were significant with taxifolin/alogliptin combination when compared to the use of each of these agents alone. In conclusion, taxifolin/alogliptin combination might be used as adjuvant therapy for attenuation of HCC.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongshan Ge ◽  
Fan Zhang ◽  
Dan Shan ◽  
Hua Chen ◽  
Xiaona Wang ◽  
...  

UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.


2017 ◽  
Vol 23 (14) ◽  
pp. 3953-3965 ◽  
Author(s):  
Francesca Fornari ◽  
Daniela Pollutri ◽  
Clarissa Patrizi ◽  
Tiziana La Bella ◽  
Sara Marinelli ◽  
...  

2006 ◽  
Vol 209 (3) ◽  
pp. 836-844 ◽  
Author(s):  
K.H. Szymczyk ◽  
T.A. Freeman ◽  
C.S. Adams ◽  
V. Srinivas ◽  
M.J. Steinbeck

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ruoyu Wang ◽  
Dong Zhang ◽  
Kewei Sun ◽  
Jianping Peng ◽  
Wenfang Zhu ◽  
...  

Abstract Background Hepatitis B virus (HBV) infection is a high-risk factor of hepatocellular carcinoma (HCC). Cellular immune responses are essential for HCC development, and the CD4+ and CD8+ T subtypes are identified as the primary anti-tumor immune cells. In the study, we investigated the effect and mechanism of amygdalin in the cellular immune response in HBV-related HCC and HCC progression. Methods The cell proliferation was examined by MTT analysis. Cells metastasis ability was detected by Invasion and migration assays. Quantification of apoptotic cells was performed with Flow cytometer assay. The protein levels of p-STAT3, STAT3, p-JAK2, JAK2, caspase-3, cleaved caspase-3 were detected by performing immunoblotting assays. Results We demonstrate that amygdalin treatment could rescue the HBV-T cell viability and IFN-γ and TNF-αproduction. In HBV-T cells, the MFI levels of CD8+ are lower than that in NC-T cells. Moreover, the phosphorylation levels of STAT3 and JAK2 are higher in HBV-T cells, compared to those in NC-T cells, and then reduced by amygdalin treatment. Co-culture with HBV-T cells could reduce IFN-γ and TNF-α, production while increase IL-6 and IL-10 production in HepG2.2.15 cells; these alterations could be partially reversed by amygdalin pretreatment. Finally, co-culture with HBV-T cells significantly promoted the cell viability, inhibited the apoptosis, and promoted the migration of HepG2.2.15 cells, and these alterations could be partially reversed by amygdalin treatment. Conclusion Our findings provide a rationale for further studies on the functions and mechanism of amygdalin inhibiting HBV-related HCC cell proliferation, invasion, and migration via T cell-mediated tumor immunity.


Sign in / Sign up

Export Citation Format

Share Document