scholarly journals Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mubeen Sarwar ◽  
Sumreen Anjum ◽  
Qurban Ali ◽  
Muhammad Waqar Alam ◽  
Muhammad Saleem Haider ◽  
...  

AbstractCucumber is an important vegetable but highly sensitive to salt stress. The present study was designed to investigate the comparative performance of cucumber genotypes under salt stress (50 mmol L−1) and stress alleviation through an optimized level of triacontanol @ 0.8 mg L−1. Four cucumber genotypes were subjected to foliar application of triacontanol under stress. Different physiological, biochemical, water relations and ionic traits were observed to determine the role of triacontanol in salt stress alleviation. Triacontanol ameliorated the lethal impact of salt stress in all genotypes, but Green long and Marketmore were more responsive than Summer green and 20252 in almost all the attributes that define the genetic potential of genotypes. Triacontanol performs as a good scavenger of ROS by accelerating the activity of antioxidant enzymes (SOD, POD, CAT) and compatible solutes (proline, glycinebetaine, phenolic contents), which lead to improved gas exchange attributes and water relations and in that way enhance the calcium and potassium contents or decline the sodium and chloride contents in cucumber leaves. Furthermore, triacontanol feeding also shows the answer to yield traits of cucumber. It was concluded from the results that the salinity tolerance efficacy of triacontanol is valid in enhancing the productivity of cucumber plants under salt stress. Triacontanol was more pronounced in green long and marketer green than in summer green and 20252. Hence, the findings of this study pave the way towards the usage of triacontanol @ 0.8 mg L−1, and green long and marketer genotypes may be recommended for saline soil.

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 547
Author(s):  
Arafat Abdel Hamed Abdel Latef ◽  
Md. Tahjib-Ul-Arif ◽  
Mohammad Saidur Rhaman

Auxin not only controls the development processes, but also regulates the stress responses of plants. In this investigation, we explored the potential roles of exogenously applied indole-3-acetic acid (IAA) in conferring salt tolerance in the faba bean (Vicia faba L.). Our results showed that foliar application of IAA (200 ppm) to salt-exposed (60 mM and 150 mM NaCl) plants promoted growth, which was evidenced by enhanced root–stem traits. IAA application ensured better osmotic protection in salt-stressed plants which was supported by reduced proline and enhanced soluble sugar, soluble protein, and total free amino acid contents in the roots, stem, and seeds. IAA application also increased the number of nodules in salt-stressed plants, which may facilitate better nitrogen assimilation. Moreover, IAA mediated improvements in mineral homeostasis (K+, Ca2+, and Mg2+) and the translocation of Na+, while it also inhibited excessive accumulation of Na+ in the roots. Salt-induced oxidative damage resulted in increased accumulation of malondialdehyde, whereas IAA spraying relegated malondialdehyde by improving antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. Together, these results together with a principal component analysis uncovered that foliar spraying of IAA alleviated the antagonistic effects of salt stress via enhancing osmolyte accumulation, ionic homeostasis, and antioxidant activity. Finally, exogenous IAA enhanced the yield of broad beans under high salinity conditions.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 657
Author(s):  
Reda E. Abdelhameed ◽  
Arafat Abdel Hamed Abdel Latef ◽  
Rania S. Shehata

Considering the detrimental effects of salt stress on the physiological mechanisms of plants in terms of growth, development and productivity, intensive efforts are underway to improve plant tolerance to salinity. Hence, an experiment was conducted to assess the impact of the foliar application of salicylic acid (SA; 0.5 mM) on the physiological traits of fenugreek (Trigonellafoenum-graecum L.) plants grown under three salt concentrations (0, 75, and 150 mM NaCl). An increase in salt concentration generated a decrease in the chlorophyll content index (CCI); however, the foliar application of SA boosted the CCI. The malondialdehyde content increased in salt-stressed fenugreek plants, while a reduction in content was observed with SA. Likewise, SA application induced an accumulation of proline, total phenolics, and flavonoids. Moreover, further increases in total free amino acids and shikimic acid were observed with the foliar application of SA, in either control or salt-treated plants. Similar results were obtained for ascorbate peroxidase, peroxidase, polyphenol oxidase, and catalase with SA application. Hence, we concluded that the foliar application of SA ameliorates salinity, and it is a growth regulator that improves the tolerance of fenugreek plants under salt stress.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 835
Author(s):  
Jose Alvarez ◽  
Elvira Martinez ◽  
Belén Diezma

Hyperspectral imaging is an appropriate method to thoroughly investigate the microscopic structure of internally heterogeneous agro-food products. By using hyperspectral technology, identifying stress symptoms associated with salinity, before a human observer, is possible, and has obvious benefits. The objective of this paper was to prove the suitability of this technique for the analysis of Triticale seeds subjected to both magneto-priming and drought and salt stress conditions, in terms of image differences obtained among treatments. It is known that, on the one hand, drought and salt stress treatments have negative effects on seeds of almost all species, and on the other hand, magneto-priming enhances seed germination parameters. Thus, this study aimed to relate hyperspectral imaging values—neither positive nor negative in themselves—to the effects mentioned above. Two main conclusions were reached: Firstly, the hyperspectral application is a feasible method for exploring the Triticale structure and for making distinctions under different drought and salt stress treatments, in line with the data variability obtained. Secondly, the lower spectral reflectance in some treatments—in the 400–1000 nm segment—is the result of a great number of chemical compounds in the seed that could be related to magneto-priming.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2224
Author(s):  
Mira Rahman ◽  
Khussboo Rahman ◽  
Khadeja Sultana Sathi ◽  
Md. Mahabub Alam ◽  
Kamrun Nahar ◽  
...  

The present investigation was executed with an aim to evaluate the role of exogenous selenium (Se) and boron (B) in mitigating different levels of salt stress by enhancing the reactive oxygen species (ROS) scavenging, antioxidant defense and glyoxalase systems in soybean. Plants were treated with 0, 150, 300 and 450 mM NaCl at 20 days after sowing (DAS). Foliar application of Se (50 µM Na2SeO4) and B (1 mM H3BO3) was accomplished individually and in combined (Se+B) at three-day intervals, at 16, 20, 24 and 28 DAS under non-saline and saline conditions. Salt stress adversely affected the growth parameters. In salt-treated plants, proline content and oxidative stress indicators such as malondialdehyde (MDA) content and hydrogen peroxide (H2O2) content were increased with the increment of salt concentration but the relative water content decreased. Due to salt stress catalase (CAT), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glyoxalase I (Gly I) and glyoxalase II (Gly II) activity decreased. However, the activity of ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST) and peroxidase (POD) increased under salt stress. On the contrary, supplementation of Se, B and Se+B enhanced the activities of APX, MDHAR, DHAR, GR, CAT, GPX, GST, POD, Gly I and Gly II which consequently diminished the H2O2 content and MDA content under salt stress, and also improved the growth parameters. The results reflected that exogenous Se, B and Se+B enhanced the enzymatic activity of the antioxidant defense system as well as the glyoxalase systems under different levels of salt stress, ultimately alleviated the salt-induced oxidative stress, among them Se+B was more effective than a single treatment.


2004 ◽  
Vol 136 (2) ◽  
pp. 3134-3147 ◽  
Author(s):  
Bruno Ruggiero ◽  
Hisashi Koiwa ◽  
Yuzuki Manabe ◽  
Tanya M. Quist ◽  
Gunsu Inan ◽  
...  

2021 ◽  
pp. 355-372
Author(s):  
Purnima Singh ◽  
Vibha Pandey ◽  
Prerana Parihar

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1713
Author(s):  
Salvador Tejada-Ruiz ◽  
Cynthia Gonzalez-Lopez ◽  
Elisa Rojas ◽  
Silvia Jiménez-Becker

Plant growth is limited by salinity stress. There are few strategies for alleviating it although Arthrospira platensis and silicon can stimulate plants to grow under stress conditions. The aim of this work was to study the effects of both a single and a joint application of Arthrospira platensis and silicon on the growth of Pelargonium hortorum L.H. Bailey under salt stress conditions. Plants were exposed to 2.0, 3.0, and 3.5 dS m−1 EC (electrical conductivity), with and without the application of microalgae and silicon. At the end of the trial, the biometric parameters and the plant analysis were determined. The microalgae hydrolysate concentration was 5 g L−1 and the silicon concentration was 150 mg L−1. Foliar spraying was applied weekly. Pelargonium can be grown in moderately saline irrigation water (3.0 dS m−1). This bedding plant mitigates salt stress by avoiding the uptake of Cl− ions and by tolerating a high Na+ concentration in the tissue. The joint foliar application of Arthrospira microalgae and silicon stimulates root, shoot, leaf, and flower formation in the Pelargonium hortorum L.H. Bailey crop under salinity conditions (3.5 dS m−1).


Sign in / Sign up

Export Citation Format

Share Document