scholarly journals Intranuclear birefringent inclusions in paraffin sections by polychromatic polarization microscopy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aiste Vitkunaite ◽  
Aida Laurinaviciene ◽  
Benoit Plancoulaine ◽  
Allan Rasmusson ◽  
Richard Levenson ◽  
...  

AbstractIntranuclear birefringent inclusions (IBI) found in various cell types in paraffin-embedded tissue sections have long been considered to be a tissue processing artifact, although an association with biological processes has been suggested. We applied polychromatic polarization microscopy to image their spatial organization. Our study provides evidence that IBI are caused by liquid paraffin-macromolecular crystals formed during paraffin-embedding procedures within cells and potentially reflect an active transcriptional status.

2021 ◽  
Author(s):  
Nicholas Navin ◽  
Runmin Wei ◽  
Siyuan He ◽  
Shanshan Bai ◽  
Emi Sei ◽  
...  

Single cell RNA sequencing (scRNA-seq) methods can profile the transcriptomes of single cells but cannot preserve spatial information. Conversely, spatial transcriptomics (ST) assays can profile spatial regions in tissue sections, but do not have single cell genomic resolution. Here, we developed a computational approach called SChart, that combines these two datasets to achieve single cell spatial mapping of cell types, cell states and continuous phenotypes. We applied SChart to reconstruct cellular spatial structures in existing datasets from normal mouse brain and kidney tissues to validate our approach. We also performed scRNA-seq and ST experiments on two ductal carcinoma in situ (DCIS) tissues and applied SChart to identify subclones that were restricted to different ducts, and specific T cell states adjacent to the tumor areas. Our data shows that SChart can accurately map single cells in diverse tissue types to resolve their spatial organization into cellular neighborhoods and tissue structures.


Author(s):  
W. E. Rigsby ◽  
D. M. Hinton ◽  
V. J. Hurst ◽  
P. C. McCaskey

Crystalline intracellular inclusions are rarely seen in mammalian tissues and are often difficult to positively identify. Lymph node and liver tissue samples were obtained from two cows which had been rejected at the slaughter house due to the abnormal appearance of these organs in the animals. The samples were fixed in formaldehyde and some of the fixed material was embedded in paraffin. Examination of the paraffin sections with polarized light microscopy revealed the presence of numerous crystals in both hepatic and lymph tissue sections. Tissue sections were then deparaffinized in xylene, mounted, carbon coated, and examined in a Phillips 505T SEM equipped with a Tracor Northern X-ray Energy Dispersive Spectroscopy (EDS) system. Crystals were obscured by cellular components and membranes so that EDS spectra were only obtainable from whole cells. Tissue samples which had been fixed but not paraffin-embedded were dehydrated, embedded in Spurrs plastic, and sectioned.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shao-Zhen Lin ◽  
Wu-Yang Zhang ◽  
Dapeng Bi ◽  
Bo Li ◽  
Xi-Qiao Feng

AbstractInvestigation of energy mechanisms at the collective cell scale is a challenge for understanding various biological processes, such as embryonic development and tumor metastasis. Here we investigate the energetics of self-sustained mesoscale turbulence in confluent two-dimensional (2D) cell monolayers. We find that the kinetic energy and enstrophy of collective cell flows in both epithelial and non-epithelial cell monolayers collapse to a family of probability density functions, which follow the q-Gaussian distribution rather than the Maxwell–Boltzmann distribution. The enstrophy scales linearly with the kinetic energy as the monolayer matures. The energy spectra exhibit a power-decaying law at large wavenumbers, with a scaling exponent markedly different from that in the classical 2D Kolmogorov–Kraichnan turbulence. These energetic features are demonstrated to be common for all cell types on various substrates with a wide range of stiffness. This study provides unique clues to understand active natures of cell population and tissues.


Author(s):  
Shawn Regis ◽  
Manisha Jassal ◽  
Sina Youssefian ◽  
Nima Rahbar ◽  
Sankha Bhowmick

Fibronectin plays a crucial role in adhesion of several cell types, mainly due to the fact that it is recognized by at least ten different integrin receptors. Since most cell types can bind to fibronectin, it becomes involved in many various biological processes. The interaction of cells with ECM proteins such as fibronectin provides the signals affecting morphology, motility, gene expression, and survival of cells [1]. Fibronectin exists in both soluble and insoluble forms; soluble fibronectin is secreted by cells and exits in cell media or body fluids, whereas insoluble fibronectin exists in tissues or the extracellular matrix of cultured cells [2]. The ability to control adsorption of fibronectin on tissue engineering scaffolds would therefore play a huge role in controlling cell attachment and survival in vivo. This can be achieved through surface functionalization of the scaffolds. The goal of these studies is to use molecular dynamics (MD) simulations to mechanistically understand how fibronectin adsorption is enhanced by surface functionalization of submicron scaffolds.


1993 ◽  
Vol 41 (1) ◽  
pp. 7-12 ◽  
Author(s):  
J H Wijsman ◽  
R R Jonker ◽  
R Keijzer ◽  
C J van de Velde ◽  
C J Cornelisse ◽  
...  

Apoptosis (programmed cell death) can be difficult to detect in routine histological sections. Since extensive DNA fragmentation is an important characteristic of this process, visualization of DNA breaks could greatly facilitate the identification of apoptotic cells. We describe a new staining method for formalin-fixed, paraffin-embedded tissue sections that involves an in situ end-labeling (ISEL) procedure. After protease treatment to permeate the tissue sections, biotinylated nucleotides are in situ incorporated into DNA breaks by polymerase and subsequently stained with DAB via peroxidase-conjugated avidin. Staining of cells with the morphological characteristics of apoptosis was demonstrated in tissues known to exhibit programmed cell death, i.e., prostate and uterus after castration, tumors, lymph node follicles, and embryos. Apoptotic cells could be discriminated morphologically from areas of labeled necrotic cells, in which DNA degradation also occurs. Because apoptosis is relatively easily recognized in H&E-stained sections of involuting prostates of castrated rats, we used this model system to validate the ISEL method for the quantification of apoptotic cells. A high correlation was found between the fractions of ISEL-labeled cells and the fractions of apoptotic cells that were morphologically determined in adjacent sections. We conclude that ISEL is a useful technique for quantification of apoptosis in paraffin sections, especially for those tissues in which morphological determination is difficult. Furthermore, this new staining method enables the use of automated image cytometry for evaluating apoptosis.


2019 ◽  
Author(s):  
Surendra Singh Patel ◽  
Sanyami Zunjarrao ◽  
Beena Pillai

AbstractEisenia fetida, the common vermicomposting earthworm, shows robust regeneration of posterior segments removed by amputation. During the period of regeneration, the newly formed tissue initially contains only undifferentiated cells but subsequently differentiates into a variety of cell types including muscle, nerve and vasculature. Transcriptomics analysis, reported previously, provided a number of candidate non-coding RNAs that were induced during regeneration. We found that one such long non-coding RNA (lncRNA) is expressed in the skin, only at the base of newly formed chaetae. The spatial organization and precise arrangement of the regenerating chaetae and the cells expressing the lncRNA on the ventral side clearly support a model wherein the regenerating tissue contains a zone of growth and cell division at the tip and a zone of differentiation at the site of amputation. The temporal expression pattern of the lncRNA, christened Neev, closely resembled the pattern of chitin synthase genes, implicated in chaetae formation. We found that the lncRNA harbours 49 sites for binding a set of four miRNAs while the Chitin Synthase 8 mRNA comprises 478 sites. The over-representation of shared miRNA sites suggests that lncRNA Neev may act as a miRNA sponge to transiently de-repress chitin synthase 8 during formation of new chaetae in the regenerating segments of Eisenia fetida.Summary statementThe earthworm, Eisenia fetida, regenerates posterior segments following amputation. The transcriptome of the regenerating worm revealed a novel lncRNA, expressed only at the base of regenerating chaetae. We propose that this lncRNA is a miRNA sponge that modulates chitin synthesis.


2019 ◽  
Author(s):  
Elham Ahmadzadeh ◽  
N. Sumru Bayin ◽  
Xinli Qu ◽  
Aditi Singh ◽  
Linda Madisen ◽  
...  

AbstractThanks to many advances in genetic manipulation, mouse models have become very powerful in their ability to interrogate biological processes. In order to precisely target expression of a gene of interest to particular cell types, intersectional genetic approaches utilizing two promoter/enhancers unique to a cell type are ideal. Within these methodologies, variants that add temporal control of gene expression are the most powerful. We describe the development, validation and application of an intersectional approach that involves three transgenes, requiring the intersection of two promoter/enhancers to target gene expression to precise cell types. Furthermore, the approach utilizes available lines expressing tTA/rTA to control timing of gene expression based on whether doxycycline is absent or present, respectively. We also show that the approach can be extended to other animal models, using chicken embryos. We generated three mouse lines targeted at the Tigre (Igs7) locus with TRE-loxP-tdTomato-loxP upstream of three genes (p21, DTA and Ctgf) and combined them with Cre and tTA/rtTA lines that target expression to the cerebellum and limbs. Our tools will facilitate unraveling biological questions in multiple fields and organisms.Summary statementAhmadzadeh et al. present a collection of four mouse lines and genetic tools for misexpression-mediated manipulation of cellular activity with high spatiotemporal control, in a reversible manner.


2017 ◽  
Author(s):  
Scott Ronquist ◽  
Geoff Patterson ◽  
Markus Brown ◽  
Stephen Lindsly ◽  
Haiming Chen ◽  
...  

AbstractThe day we understand the time evolution of subcellular elements at a level of detail comparable to physical systems governed by Newton’s laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology, providing data-guided frameworks that allow us to develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. In this paper, we describe an approach to optimizing the use of transcription factors (TFs) in the context of cellular reprogramming. We construct an approximate model for the natural evolution of a cell cycle synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points along the cell cycle. In order to arrive at a model of moderate complexity, we cluster gene expression based on the division of the genome into topologically associating domains (TADs) and then model the dynamics of the TAD expression levels. Based on this dynamical model and known bioinformatics, such as transcription factor binding sites (TFBS) and functions, we develop a methodology for identifying the top transcription factor candidates for a specific cellular reprogramming task. The approach used is based on a device commonly used in optimal control. Our data-guided methodology identifies a number of transcription factors previously validated for reprogramming and/or natural differentiation. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes.Significance StatementReprogramming the human genome toward any desirable state is within reach; application of select transcription factors drives cell types toward different lineages in many settings. We introduce the concept of data-guided control in building a universal algorithm for directly reprogramming any human cell type into any other type. Our algorithm is based on time series genome transcription and architecture data and known regulatory activities of transcription factors, with natural dimension reduction using genome architectural features. Our algorithm predicts known reprogramming factors, top candidates for new settings, and ideal timing for application of transcription factors. This framework can be used to develop strategies for tissue regeneration, cancer cell reprogramming, and control of dynamical systems beyond cell biology.


Sign in / Sign up

Export Citation Format

Share Document