scholarly journals Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Tarique ◽  
S. M. Sapuan ◽  
A. Khalina

AbstractThis research was set out to explore the development of arrowroot starch (AS) films using glycerol (G) as plasticizer at the ratio of 15, 30, and 45% (w/w, starch basis) using solution casting technique. The developed films were analyzed in terms of physical, structural, mechanical, thermal, environmental, and barrier properties. The incorporation of glycerol to AS film-making solution reduced the brittleness and fragility of films. An increment in glycerol concentration caused an increment in film thickness, moisture content, and solubility in water, whereas density and water absorption were reduced. The tensile strength and modulus of G-plasticized AS films were reduced significantly from 9.34 to 1.95 MPa and 620.79 to 36.08 MPa, respectively, while elongation at break was enhanced from 2.41 to 57.33%. FTIR analysis revealed that intermolecular hydrogen bonding occurred between glycerol and AS in plasticized films compared to control films. The G-plasticized films showed higher thermal stability than control films. The cross-sectional micrographs revealed that the films containing 45% glycerol concentration had higher homogeneity than 15% and 30%. Water vapour permeability of plasticized films increased by an increase in glycerol concentrations. The findings of this research provide insights into the development of bio-degradable food packaging.

2018 ◽  
Vol 792 ◽  
pp. 104-110
Author(s):  
Jasmine Sim Pei Chieh ◽  
Bazlul Mobin Siddique

The main objective of this study is to reinforce the mechanical strength and water resistance abilities of sago starch biopolymer by incorporating ZnO nanofillers. The biopolymer based nanocomposite films were cast utilizing different weight percentages of ZnO nanofillers (0, 1, 3 or 5 wt%) in sago starch matrix through solution casting technique. Uniform dispersing of ZnO nanofillers throughout the sago starch matrix was achieved by sonication and also to prevent the formation of ZnO nanoparticles aggregates. This was to further reinforce the chemical barrier properties of the film The results illustrated that with the increase of loading of ZnO nanoparticles from 0 to 5 wt%, the tensile strength and elastic modulus improved from 0.180 to 0.980 MPa and from 3.410 to 6.401 MPa respectively for the films, attributing to the high surface to volume ratios, the high mechanical strength of ZnO nanoparticles and the strong nanofiller-matrix interfacial adhesion. The elongation at break also enhanced owing to the slippage of ZnO nanofillers and the oriented sago starch polymer which activated the shear flow of the sago starch polymer. Sago starch nanocomposites with ZnO loadings varied from 0 to 5 wt% demonstrated decreased water vapour permeability from 4.992 × 10−10 g m−1 s−1 Pa−1 to 2.723 × 10−10 g m−1 s−1 Pa−1.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 166 ◽  
Author(s):  
Arantzazu Valdés ◽  
Esther Garcia-Serna ◽  
Antonio Martínez-Abad ◽  
Francisco Vilaplana ◽  
Alfonso Jimenez ◽  
...  

Pomegranate (Punica granatum L.) seed juice by-product (PSP) was added as reinforcing and antimicrobial agent to fish gelatin (FG) films as a promising eco-friendly active material for food packaging applications. A complete linkage analysis of polysaccharides in PSP showed xylan and cellulose as main components. This residue showed also high total phenolic content and antioxidant activity. Three formulations were processed by adding PSP to FG (0, 10, 30 wt. %) by the casting technique, showing films with 10 wt. % of PSP the best performance. The addition of PSP decreased elongation at break and increased stiffness in the FG films, particularly for 30 wt. % loading. A good compatibility between FG and PSP was observed by SEM. No significant (p < 0.05) differences were obtained for barrier properties to oxygen and water vapour permeability compared to the control with the incorporation of PSP, whereas water resistance considerably increased and transparency values decreased (p < 0.05). High thermal stability of films and inhibition against S. aureus were observed. The addition of PSP at 10 wt. % into FG was shown as a potential strategy to maintain the integrity of the material and protect food against lipid oxidation, reducing huge amounts of pomegranate and fish wastes.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 228
Author(s):  
Swarup Roy ◽  
Lindong Zhai ◽  
Hyun Chan Kim ◽  
Duc Hoa Pham ◽  
Hussein Alrobei ◽  
...  

A chitosan-based nanocomposite film with tannic acid (TA) as a cross-linker and titanium dioxide nanoparticles (TiO2) as a reinforcing agent was developed with a solution casting technique. TA and TiO2 are biocompatible with chitosan, and this paper studied the synergistic effect of the cross-linker and the reinforcing agent. The addition of TA enhanced the ultraviolet blocking and mechanical properties of the chitosan-based nanocomposite film. The reinforcement of TiO2 in chitosan/TA further improved the nanocomposite film’s mechanical properties compared to the neat chitosan or chitosan/TA film. The thermal stability of the chitosan-based nanocomposite film was slightly enhanced, whereas the swelling ratio decreased. Interestingly, its water vapor barrier property was also significantly increased. The developed chitosan-based nanocomposite film showed potent antioxidant activity, and it is promising for active food packaging.


2019 ◽  
Vol 9 (16) ◽  
pp. 3436 ◽  
Author(s):  
Marc Borrega ◽  
Hannes Orelma

The effects of xylan extraction from birch kraft pulp on the manufacture and properties of cellulose nanofibril (CNF) films were here investigated. Hot water extractions of bleached and unbleached kraft pulps were performed in a flow-through system to remove and recover the xylan. After the extraction, the pulps were oxidized with 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) and fibrillated in a high-pressure microfluidizer. Compared to CNF from bleached kraft pulp, the CNF dispersions obtained from water-extracted pulps were less viscous and generally contained a higher amount of microfiber fragments, although smaller in size. In all cases, however, smooth and highly transparent films were produced from the CNF dispersions after the addition of sorbitol as plasticizer. The CNF films made from water-extracted pulps showed a lower tensile strength and ductility, probably due to their lower xylan content, but the stiffness was only reduced by the presence of lignin. Interestingly, the CNF films from water-extracted bleached pulps were less hydrophilic, and their water vapour permeability was reduced up to 25%. Therefore, hot water extraction of bleached birch kraft pulp could be used to produce CNF films with improved barrier properties for food packaging, while obtaining a high-purity xylan stream for other high-value applications.


2017 ◽  
Author(s):  
Arham Rusli

Appropriate concentration of base material and plasticizer is required to obtain good physical and mechanical properties of edible film for food packaging and preservation functions. The aim of this study was to obtain the best combination of the base material and plasticizer in the manufacture of agar films based on physical and mechanical properties. Results showed that the physical and mechanical properties of the agar edible film were affected by the agar and glycerol concentrations. Increasing agar concentrations resulted in the increase in the film thickness, tensile strength (TS), and elongation at break (EAB), but decreased the filmsolubility. While increasing glycerol concentration tended to increase the film thickness and solubility, but decrease the TS of the film. The best concentration combination of agar and glycerol in this study was 3 and 10%, respectively.


2021 ◽  
Vol 13 (24) ◽  
pp. 13504
Author(s):  
Petronela Nechita ◽  
Roman Mirela ◽  
Florin Ciolacu

Xylan hemicelluloses are considered the second most abundant class of polysaccharides after cellulose which has good natural barrier properties necessary for foods packaging papers and films. Xylan exists today as a natural polymer, but its utilisation in packaging applications is limited and not sufficiently analysed. In this study, the performances of hardwood xylan hemicellulose in forming uniform films and as biopolymer for paper coatings were analysed. The xylan-coated paper and film samples were tested regarding their water, air, and water vapour permeability, water solubility, mechanical strength, and antimicrobial activity against pathogenic bacteria. Structural analyses of xylan hemicelluloses emphasised a high number of hydroxyl groups with high water affinity. This affects the functional properties of xylan-coated papers but can facilitate the chemical modification of xylan in order to improve their hydrophobic properties and extend their areas of application. The obtained results unveil a promising starting point for using this material in food packaging applications as a competitive and sustainable alternative to petroleum-based polymers.


2020 ◽  
Vol 35 (5) ◽  
pp. 440-447
Author(s):  
P. F. Teixeira ◽  
J. A. Covas ◽  
M. J. Suarez ◽  
I. Angulo ◽  
L. Hilliou

Abstract One of the routes to minimize the environmental impact of plastics waste is the use of bio-sourced and biodegradable alternatives, particularly for packaging applications. Although Polyhydroxyalkanoates (PHA) are attractive candidates for food packaging, they have poor processability, particularly for extrusion film blowing. Thus, one relatively successful alternative has been blending PHA with a biodegradable polymer. This work proposes film blowing of a co-extruded Poly (hydroxybutyrate) (PHB) layer with a poly butylene adipateco- terephtalate (PBAT) layer to enhance bubble stability, mechanical and barrier properties. Co-extrusion is detailed, together with the different strategies followed to improve adhesion between film layers and the PHB content in the films. Films with thicknesses below 50 micron and elongation at break beyond 500% were consistently produced.


2019 ◽  
Vol 6 (1) ◽  
pp. 72
Author(s):  
Yuli Ristianingsih ◽  
Maria Natalia

Food packaging most used in order to keep the quality of food could be maintained to consumers. Plastic non-biogradable have weakness such as it is not degradable of environment and it is not safe to health because contain bhispenol. Edible film is solution for this problem because made of chitosan-starch. Starch is natural polymer that safe to use because easy to degradable, edible and economist. Corn starch contain high amylose content is 25%. Addition of chitosan could increase mechanical properties and barrier properties of edible film. The purpose of this research was to find out the effect of addition of chitosan on physiochemical properties edible film. Variation of chitosan used was 0,5; 1; 1,5 and 2 gram. The best result of solubility in water was addition chitosan 2 gram with value 49,74%.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1193
Author(s):  
Chen Li ◽  
Jiliu Pei ◽  
Shengyu Zhu ◽  
Yukang Song ◽  
Xiaohui Xiong ◽  
...  

Chitosan/peptide films were prepared by incorporating peptides (0.4%, w/v) from soy, corn and caseins into chitosan films. The presence of peptides significantly affected the physical, antibacterial and antioxidative properties of chitosan films. Among these films, those containing corn peptide showed the best water vapor barrier properties, and the tensile strength and elongation at break increased to 24.80 Mpa and 23.94%, respectively. Characterization of surface hydrophobicity and thermal stability suggested the strongest intermolecular interactions between corn peptides and chitosan. Moreover, films containing casein peptides showed the highest antibacterial activity and radical scavenging activity. The DPPH scavenging rate of films containing casein peptides reached 46.11%, and ABTS scavenging rate reached 66.79%. These results indicate the chitosan/peptide films may be promising food packaging materials.


2018 ◽  
Vol 382 ◽  
pp. 38-43 ◽  
Author(s):  
Shagufta Ishtiaque ◽  
Shahina Naz ◽  
Jawaad Ahmed ◽  
Arshad Faruqui

The food packaging material provides protection against moisture, heat, enzymes, oxygen penetration etc. The shelf life of food can be increased by coating barrier materials on plastic films. In this work the oxygen transfer rate (OTR) and water vapour permeability (WVP) of Polyethylene terephthalate (PET) films were adjusted via coating of Polyphenols and Gelatin mixture (PGM) with different concentrations while maintaining the other properties of modified PET films. This article deals with the changes in properties of PGM coated PET films with some innovative ideas of multilayer film formulation. Polyphenolics were extracted from Terminalia Catappa (Indian almond), Camellia sinensis (Green tea leaves) and Trachyspermumammi (Ajwain). The results showed that WVP was decreased from 1.0±0 to 0.12±0.03 g/in2/day (p < 0.01) in comparison with uncoated (1.3±0.07g/in2/day). Similarly, same trend was obtained for OTR (63.5±0.02 to 38.1±0.03g/in2/day) with respect to uncoated film (82 ± 3.5). This study provides important evidence that addition of PGM on PET films leads to improved films in terms of OTR and WVP with minor changes in optical properties.


Sign in / Sign up

Export Citation Format

Share Document