scholarly journals Theory of nonvolatile resistive switching in monolayer molybdenum disulfide with passive electrodes

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Sanchali Mitra ◽  
Arnab Kabiraj ◽  
Santanu Mahapatra

AbstractResistive-memory devices promise to revolutionize modern computer architecture eliminating the data-shuttling bottleneck between the memory and processing unit. Recent years have seen a surge of experimental demonstrations of such devices built upon two-dimensional materials based metal–insulator–metal structures. However, the fundamental mechanism of nonvolatile resistive switching has remained elusive. Here, we conduct reactive molecular dynamics simulations for a sulfur vacancy inhabited monolayer molybdenum disulfide-based device with inert electrode systems to gain insight into such phenomena. We observe that with the application of a suitable electric field, at the vacancy positions, the sulfur atom from the other plane pops and gets arrested in the plane of the molybdenum atoms. Rigorous first principles based calculations surprisingly reveal localized metallic states (virtual filament) and stronger chemical bonding for this new atomic arrangement, explaining the nonvolatile resistive switching. We further observe that localized Joule heating plays a crucial role in restoring the popped sulfur atom to its original position. The proposed theory, which delineates both unipolar and bipolar switching, may provide useful guidelines for designing high-performance resistive-memory-based computing architecture.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1081
Author(s):  
Shin-Yi Min ◽  
Won-Ju Cho

In this study, we implemented a high-performance two-terminal memristor device with a metal/insulator/metal (MIM) structure using a solution-derived In-Ga-Zn-Oxide (IGZO)-based nanocomposite as a resistive switching (RS) layer. In order to secure stable memristive switching characteristics, IGZO:N nanocomposites were synthesized through the microwave-assisted nitridation of solution-derived IGZO thin films, and the resulting improvement in synaptic characteristics was systematically evaluated. The microwave-assisted nitridation of solution-derived IGZO films was clearly demonstrated by chemical etching, optical absorption coefficient analysis, and X-ray photoelectron spectroscopy. Two types of memristor devices were prepared using an IGZO or an IGZO:N nanocomposite film as an RS layer. As a result, the IGZO:N memristors showed excellent endurance and resistance distribution in the 103 repeated cycling tests, while the IGZO memristors showed poor characteristics. Furthermore, in terms of electrical synaptic operation, the IGZO:N memristors possessed a highly stable nonvolatile multi-level resistance controllability and yielded better electric pulse-induced conductance modulation in 5 × 102 stimulation pulses. These findings demonstrate that the microwave annealing process is an effective synthesis strategy for the incorporation of chemical species into the nanocomposite framework, and that the microwave-assisted nitridation improves the memristive switching characteristics in the oxide-based RS layer.


2021 ◽  
Vol 118 (17) ◽  
pp. 172104
Author(s):  
Xinna Yu ◽  
Ke Chang ◽  
Anhua Dong ◽  
Zhikai Gan ◽  
Kang'an Jiang ◽  
...  

Author(s):  
Hiroshi Yamamoto ◽  
Yasufumi Nagai ◽  
Shinichi Kimura ◽  
Hiroshi Takahashi ◽  
Satoko Mizumoto ◽  
...  

2019 ◽  
Vol 9 (4) ◽  
pp. 486-493 ◽  
Author(s):  
S. Sahoo ◽  
P. Manoravi ◽  
S.R.S. Prabaharan

Introduction: Intrinsic resistive switching properties of Pt/TiO2-x/TiO2/Pt crossbar memory array has been examined using the crossbar (4×4) arrays fabricated by using DC/RF sputtering under specific conditions at room temperature. Materials and Methods: The growth of filament is envisaged from bottom electrode (BE) towards the top electrode (TE) by forming conducting nano-filaments across TiO2/TiO2-x bilayer stack. Non-linear pinched hysteresis curve (a signature of memristor) is evident from I-V plot measured using Pt/TiO2-x /TiO2/Pt bilayer device (a single cell amongst the 4×4 array is used). It is found that the observed I-V profile shows two distinguishable regions of switching symmetrically in both SET and RESET cycle. Distinguishable potential profiles are evident from I-V curve; in which region-1 relates to the electroformation prior to switching and region-2 shows the switching to ON state (LRS). It is observed that upon reversing the polarity, bipolar switching (set and reset) is evident from the facile symmetric pinched hysteresis profile. Obtaining such a facile switching is attributed to the desired composition of Titania layers i.e. the rutile TiO2 (stoichiometric) as the first layer obtained via controlled post annealing (650oC/1h) process onto which TiO2-x (anatase) is formed (350oC/1h). Results: These controlled processes adapted during the fabrication step help manipulate the desired potential barrier between metal (Pt) and TiO2 interface. Interestingly, this controlled process variation is found to be crucial for measuring the switching characteristics expected in Titania based memristor. In order to ensure the formation of rutile and anatase phases, XPS, XRD and HRSEM analyses have been carried out. Conclusion: Finally, the reliability of bilayer memristive structure is investigated by monitoring the retention (104 s) and endurance tests which ensured the reproducibility over 10,000 cycles.


Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2021 ◽  
Vol 9 (13) ◽  
pp. 4522-4531
Author(s):  
Chao Yun ◽  
Matthew Webb ◽  
Weiwei Li ◽  
Rui Wu ◽  
Ming Xiao ◽  
...  

Interfacial resistive switching and composition-tunable RLRS are realized in ionically conducting Na0.5Bi0.5TiO3 thin films, allowing optimised ON/OFF ratio (>104) to be achieved with low growth temperature (600 °C) and low thickness (<20 nm).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


AIP Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 065202
Author(s):  
Pan Zhang ◽  
Wenjing Zhai ◽  
Zhibo Yan ◽  
Xiang Li ◽  
Yongqiang Li ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 318
Author(s):  
Yang Li ◽  
Cheng Zhang ◽  
Zhiming Shi ◽  
Jingni Li ◽  
Qingyun Qian ◽  
...  

The explosive growth of data and information has increasingly motivated scientific and technological endeavors toward ultra-high-density data storage (UHDDS) applications. Herein, a donor−acceptor (D–A) type small conjugated molecule containing benzothiadiazole (BT) is prepared (NIBTCN), which demonstrates multilevel resistive memory behavior and holds considerable promise for implementing the target of UHDDS. The as-prepared device presents distinct current ratios of 105.2/103.2/1, low threshold voltages of −1.90 V and −3.85 V, and satisfactory reproducibility beyond 60%, which suggests reliable device performance. This work represents a favorable step toward further development of highly-efficient D−A molecular systems, which opens more opportunities for achieving high performance multilevel memory materials and devices.


2016 ◽  
Vol 4 (46) ◽  
pp. 10967-10972 ◽  
Author(s):  
Sujaya Kumar Vishwanath ◽  
Jihoon Kim

The all-solution-based memory devices demonstrated excellent bipolar switching behavior with a high resistive switching ratio of 103, excellent endurance of more than 1000 cycles, stable retention time greater than 104s at elevated temperatures, and fast programming speed of 250 ns.


Sign in / Sign up

Export Citation Format

Share Document