scholarly journals Tanshinone II A enhances pyroptosis and represses cell proliferation of HeLa cells by regulating miR-145/GSDMD signaling pathway

2020 ◽  
Vol 40 (4) ◽  
Author(s):  
Wenjuan Tong ◽  
Jianghong Guo ◽  
Chunfen Yang

Abstract Cervical cancer is the fourth most common cancer in women globally. Lack of effective pharmacotherapies for cervical cancer mainly attributed to an elusive understanding of the mechanism underlying its pathogenesis. Pyroptosis plays a key role in inflammation and cancer. Our study identified microRNA (miR) 145 (miR-145)/gasdermin D (GSDMD) signaling pathway as critical mediators in the effect of tanshinone II A on HeLa cells. In the present study, we found that treatment of tanshinone II A led to an obvious repression of cell proliferation and an increase in apoptosis on HeLa cells, especially in high concentration. Compared with the controlled group, tanshinone II A enhanced the activity of caspase3 and caspase9. Notably, the results demonstrated that tanshinone II A regulated cell proliferation of HeLa cells by regulating miR-145/GSDMD signaling pathway. Treatment of tanshinone II A significantly up-regulated the expression of GSDMD and miR-145. After transfection of si-miR-145 plasmids, the effects of tanshinone II A on HeLa cells were converted, including cell proliferation, apoptosis and pyroptosis. In addition, the results showed that tanshinone II A treatment altered the expression level of PI3K, p-Akt, NF-kB p65 and Lc3-I. Collectively, our findings demonstrate that tanshinone II A exerts anticancer activity on HeLa cells by regulating miR-145/GSDMD signaling. The present study is the first time to identify miR-145 as a candidate target in cervical cancer and show an association between miR-145 and pyroptosis, which provides a novel therapy for the treatment of cervical cancer.

2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Zhongyuan Mu ◽  
Hongling Zhang ◽  
Peng Lei

Abstract As a major bioactive compound from grapes, piceatannol (PIC) has been reported to exert anti-atherosclerotic activity in various studies. Nevertheless, the mechanism underlying the effect of piceatannol against atherosclerosis (AS) is elusive. Our study identified miR-200a/Nrf2/GSDMD signaling pathway as critical mediators in the effect of piceatannol on macrophages. In the present study, we confirmed that treatment of piceatannol repressed the oxLDL-induced lipid storage in macrophages. Compared with control group, piceatannol inhibited TG storage and the activity of caspase1. It is noting that in response to oxLDL challenge, piceatannol abated the pyroptosis in RAW264.7 cells, with a decreased expression of caspase1, gasdermin D (GSDMD), IL-18, IL-1β and NLRP3. Moreover, we investigated the role of microRNA (miR)-200a/Nrf2 signaling pathway in the effect of piceatannol. The results declared that after transfection of si-miR-200a or si-Nrf2 plasmids, the effects of piceatannol on macrophages were converted, including lipid storage and pyroptosis. Importantly, si-miR-200a plasmid reduced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), indicating that miR-200a acted as an enhancer of Nrf2 in macrophages. Collectively, our findings demonstrate that piceatannol exerts anti-atherosclerotic activity on RAW264.7 cells by regulating miR-200a/Nrf2/GSDMD signaling. The present study is the first time to identify miR-200a as a candidate target in AS and declared an association between miR-200a and pyroptosis, which provides a novel therapy for the treatment of AS.


2019 ◽  
Vol 17 (5) ◽  
pp. 265-275
Author(s):  
Y. Peristiowati ◽  
Y. Puspitasari ◽  
Indasah

This study is aimed at analyzing the anticancer properties of papaya leaf extract, specifically the inhibition of cell proliferation and apoptotic induction through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and p53 pathways. Twenty-five mice (Mus musculus), aged 2 months and weighing 20–30 g, was injected with 0.5 mg dexamethasone for 7 days. The mice were then injected intracutaneously with 1 ml of HeLa cells (8 × 106 HeLa cells/microliter). The mice were divided into five groups (5 each): negative control (P1) (5% CMC-Na, sodium carboxymethyl cellulose), treatment II (225 mg/kg BW (body weight) papaya leaves methanol extract), treatment III (450 mg/kg BW), treatment IV (750 mg/kg BW), and treatment PV (2 mg alcohol anticancer drug). Papaya leaf extract treatments were applied for 2 weeks. Then, the tumor tissue was isolated for hematoxylin and eosin staining. Immunohistochemical imaging was used to detect Ki-67, caspase-3, NF-κB, and p53 expression. Further analysis was undertaken using the ImmunoRatio software program. The results indicated that administration of papaya leaf methanol extract significantly increased the expression of NF-κB and p53 at a dose of 450 mg/kg BW. Our results also showed that the mice treated with 450 mg of papaya leaf extract per kg of BW (P3) had the largest increase of caspase-3 expression compared to the negative control group. Papaya leaf ethanol extract decreased the cancer cell proliferation index and increased apoptosis of cancer cells in animal models of cervical cancer; it may also work to increase NF-kB expression and expression of the p53 gene.


2018 ◽  
Vol 19 (10) ◽  
pp. 3153 ◽  
Author(s):  
J. Muñoz-Bello ◽  
Leslie Olmedo-Nieva ◽  
Leonardo Castro-Muñoz ◽  
Joaquín Manzo-Merino ◽  
Adriana Contreras-Paredes ◽  
...  

The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of Sp5, in vitro and in vivo. Moreover, although differences in TCF-4 transcriptional activation were found among E6 intratype variants, no changes were observed in the levels of regulated genes. Furthermore, our data support that E6 proteins cooperate with β-catenin to promote cell proliferation.


2021 ◽  
Vol 17 (9) ◽  
pp. 1882-1889
Author(s):  
Suqin Wang ◽  
Lina Xu ◽  
Zhiqiang Zhang ◽  
Ping Wang ◽  
Rong Zhang ◽  
...  

Dysregulation expression of miR-375 is noted to correlate with progression of cervical cancer. This study attempted to investigate the impact of overexpressed miR-375-loaded liposome nanoparticles on proliferation of cervical cancer (CC), to provide an insight on pathogenesis of CC disorder. CC cells were co-cultured with pure liposome nanoparticles (empty vector group), miR-375 agonist-loaded liposome nanoparticles, or transfected with miR-375 antagonist. Besides, some cells were exposed to TGF-β/Smads signaling pathway inhibitor or activator whilst cell proliferation was assessed by MTT assay, and expressions of FZD4 and miR-375 were determined. Western blot analysis was carried out to detect the expression of TGF-β pathway factors (TGF-β, Smad2, Smad7, p-Smad2) and its downstream Smads pathway. The interaction between miR-375 and FZD4 was evaluated by dual-luciferase reporter gene assay. Overexpression of miR-375 induced arrest at the G0/G1 phase of cell cycle and elevation of Smad2 protein expression (P <0.05), with lower expressions of TGF-β, Smad7, p-Smad2, and FZD4, while transfection with miR-375 inhibitor exhibited opposite activity. Presence of miR-375 agonist-loaded liposome nanoparticles induced decreased cell proliferation. There was a targeting relationship between miR-375 and FZD4, and administration with TGF-β/Smads agonist resulted in increased miR-375 and Smad2 expressions, as well as decreased TGF-β, Smad7, p-Smad2, FZD4 protein expression, and the number of S phase and G2/M phase cells (P < 0.05). The signaling inhibitor oppositely suppressed cell proliferation decreasing miR-375 expression. miR-375-loaded liposome nanoparticles activated TGF-β/Smads signaling pathway to restrain cell cycle and suppress cell division, and proliferation through targeting FZD4 in CC. Its molecular mechanism is related to activation of TGF-β/Smads signaling pathway.


2020 ◽  
Vol 10 ◽  
Author(s):  
Nan Cui ◽  
Lu Li ◽  
Qian Feng ◽  
Hong-mei Ma ◽  
Dan Lei ◽  
...  

Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document