Accidental Hypothermia and Rewarming in Dogs

1979 ◽  
Vol 56 (6) ◽  
pp. 601-606 ◽  
Author(s):  
C. D. Auld ◽  
I. M. Light ◽  
J. N. Norman

1. Twenty lightly anaesthetized dogs were cooled to 29°C by cold-water immersion. Ventilation was spontaneous and the animals were allowed to shiver freely. Metabolic heat production and respiratory heat exchange were measured during rewarming. 2. The animals were divided into four groups each of five dogs and each group was rewarmed by a different technique. The control group was allowed to rewarm spontaneously; a second group was given warm (45–50°C) fully humidified air to breathe in addition; a third group was rewarmed in a hot-water bath (42–44°C) and the remaining group was given a muscle relaxant to abolish shivering and rewarmed by warm inspired air only. 3. The group rewarmed in hot water achieved normal core temperature most rapidly but there was no difference in the rewarming rates of the group rewarmed spontaneously and of the group given warm air to breathe in addition. 4. The group given a muscle relaxant and rewarmed with warm inspired air required 12 h to achieve the same core temperature as the shivering groups achieved in 2 h. Compared with the heat produced by shivering the amount of heat which it was possible to transfer across the respiratory tract was so small that it did not materially influence the rate of rewarming.

1992 ◽  
Vol 73 (4) ◽  
pp. 1253-1258 ◽  
Author(s):  
G. G. Giesbrecht ◽  
G. K. Bristow

An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53–80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40–65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.


1960 ◽  
Vol 15 (6) ◽  
pp. 1031-1034 ◽  
Author(s):  
Jacques LeBlanc ◽  
J. A. Hildes ◽  
O. Héroux

A group of Gaspé fishermen used to cold water immersion and control subjects from the same vicinity were studied to determine if the fishermen's hands were adapted to cold. With one hand immersed in cold water, the pressor response was greater in the control subjects; the fishermen maintained a higher finger temperature and complained less of pain; heat flow from the fishermen's hands was greater than in the control group; finger numbness as measured by a modification of Mackworth's V-test was variable and not significantly different in the two groups. Skin biopsies showed no difference in skin thickness or cell size but there was a significantly greater number of mast cells in the fishermen's skin. The differences between the fishermen and the control subjects may be related to repeated cold exposure. Submitted on June 7, 1960


2022 ◽  
pp. 109980042110635
Author(s):  
Maria Dyah Kurniasari ◽  
Karen A. Monsen ◽  
Shuen Fu Weng ◽  
Chyn Yng Yang ◽  
Hsiu Ting Tsai

Background: Gout arthritis is an autoinflammatory arthritis that generates chronic long-term pain. Pain impacts physical activities, joint mobility, stress, anxiety, depression, and quality of life. Cold-water immersion therapy reduces inflammation and pain associated with gout arthritis. However, cold-water immersion therapy has not been conducted among people worldwide with gout arthritis. Objective: To investigate the cold-water immersion intervention on pain, joint mobility, physical activity, stress, anxiety, depression, and quality of life among acute gout patients. Methods: A community-based randomized control trial design with two parallel-intervention groups: a cold-water immersion group (20–30°C 20 minutes/day for 4 weeks) and a control group. In total, 76 eligible participants in Tomohon City, Indonesia, were recruited using a multi-stage sampling method and were randomly assigned using block randomization. A generalized estimating equation model was used to analyze the results (coef. β) and produce 95% confidence intervals (CIs). A path analysis was used to analyze mediating effects. Results: Significant pain alleviation ( β = −2.06; −2.42), improved joint mobility ( β = 1.20, 1.44), physical activity ( β = 2.05, .59), stress ( β = −1.25; −1.35), anxiety ( β = −.62; −1.37), and quality of life ( β = 5.34; 9.93) were detected after cold-water immersion at the second-week, and were maintained to the fourth-week time point, compared to pre-intervention and the control group. Depression ( β = −1.80) had decreased by the fourth week compared to the pre-test and control group. Cold-water immersion directly mediated alleviation of pain ( β = −.46, p ≤ .001) and to promote the quality of life ( β = .16, p = .01). Conclusions: Cold-water immersion decreased pain, stress, anxiety, and depression, and increased joint mobility, physical activity, and quality of life. It mediated alleviation of pain to increase the quality of life.


2016 ◽  
Vol 41 (11) ◽  
pp. 1163-1170 ◽  
Author(s):  
Avina McCarthy ◽  
James Mulligan ◽  
Mikel Egaña

A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (Ppeak) and 30 s at 90% Ppeak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P < 0.05) longer during Ex2 following the 5- and 10-min cold-water immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P < 0.05) lower during most periods of Ex2 after both cold-water immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.


2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P &lt; .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be &lt;10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


Author(s):  
M. Mokhtar ◽  
B. Adel ◽  
B. Wahib ◽  
A. Hocine ◽  
B. Othman ◽  
...  

Purpose: The purpose of this study is to compare two cold water immersion (CWI) protocols, continuous and fractionated, to optimize the recovery of Handball players after on recovery from exercise resulting in exercise-induced muscle damage. Material: Ten male Handball players (age: 15 ± 1.4 years, mass index: 67.2 ± 5.1 kg, height: 176.6 ± 7.30) voluntarily participated in the study. After three 90-minute training sessions (average heart rate 160 ± 15.81, 156 ± 5.53 and 156 ± 12.24 bpm) per week, participants were divided into 03 groups. The first experimental group (GE1) in continuous immersion (CWIC) of (12 minutes, 12± 0.4° C), a second experimental group (GE2) in fractional immersion (CWIF) of (4 x 2 min at 12 ± 0.4° C + 1 min out of water) and a control group (GC) in passive recovery. Body mass indices (BMI), countermovement (Countermovement jump) and muscle pain (Intensity of pain in the thighs) were measured. Results : The results concerning the percentage differences in the variation of the CMJ occurred respectively at 24h (Z = 12.62, p = 0.004) and 48h (Z = 16.22, p <0.001) compared to the control group. In addition, the results for muscle volume did not report any significant interaction (F (5.64) = 3.42, p = 0.078). The results of both protocols showed their effectiveness in reducing pain intensity by 24 and 48 hours after intense training (F (3.54) = 2.91, p = 0.016, p2 = 0.24). Conclusion: In conclusion, continuous and fractionated cold water immersion is beneficial for neuromuscular recovery 24 hours after intense exercise. The results also demonstrate a rapid recovery of handball players from their physical potential required in high level competitions.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9785
Author(s):  
Miho Yoshimura ◽  
Tatsuya Hojo ◽  
Hayato Yamamoto ◽  
Misato Tachibana ◽  
Masatoshi Nakamura ◽  
...  

Background Cold therapy has the disadvantage of inducing vasoconstriction in arterial and venous capillaries. The effects of carbon dioxide (CO2) hot water depend mainly on not only cutaneous vasodilation but also muscle vasodilation. We examined the effects of artificial CO2 cold water immersion (CCWI) on skin oxygenation and muscle oxygenation and the immersed skin temperature. Subjects and Methods Fifteen healthy young males participated. CO2-rich water containing CO2 >1,150 ppm was prepared using a micro-bubble device. Each subject’s single leg was immersed up to the knee in the CO2-rich water (20 °C) for 15 min, followed by a 20-min recovery period. As a control study, a leg of the subject was immersed in cold tap-water at 20 °C (CWI). The skin temperature at the lower leg under water immersion (Tsk-WI) and the subject’s thermal sensation at the immersed and non-immersed lower legs were measured throughout the experiment. We simultaneously measured the relative changes of local muscle oxygenation/deoxygenation compared to the basal values (Δoxy[Hb+Mb], Δdeoxy[Hb+Mb], and Δtotal[Hb+Mb]) at rest, which reflected the blood flow in the muscle, and we measured the tissue O2 saturation (StO2) by near-infrared spectroscopy on two regions of the tibialis anterior (TA) and gastrocnemius (GAS) muscles. Results Compared to the CWI results, the Δoxy[Hb+Mb] and Δtotal[Hb+Mb] in the TA muscle at CCWI were increased and continued at a steady state during the recovery period. In GAS muscle, the Δtotal[Hb+Mb] and Δdeoxy[Hb+Mb] were increased during CCWI compared to CWI. Notably, StO2values in both TA and GAS muscles were significantly increased during CCWI compared to CWI. In addition, compared to the CWI, a significant decrease in Tsk at the immersed leg after the CCWI was maintained until the end of the 20-min recovery, and the significant reduction continued. Discussion The combination of CO2 and cold water can induce both more increased blood inflow into muscles and volume-related (total heme concentration) changes in deoxy[Hb+Mb] during the recovery period. The Tsk-WI stayed lower with the CCWI compared to the CWI, as it is associated with vasodilation by CO2.


2020 ◽  
Vol 12 (1) ◽  
pp. 236-241
Author(s):  
Saman Khakpoor Roonkiani ◽  
Mohsen Ebrahimi ◽  
Ali Shamsi Majelan

Summary Study aim: To investigate the effect of cold water immersion (CWI) on muscle damage indexes after simulated soccer activity in young soccer players. Material and methods: Eighteen professional male soccer players were randomly divided into two groups: CWI (n = 10, age 19.3 ± 0.5, body mass index 22.2 ± 1.3) and control (n = 8, age 19.4 ± 0.8, body mass index 21.7 ± 1.5). Both groups performed a simulated 90-minute soccer-specific aerobic field test (SAFT90). Then, the CWI group subjects immersed themselves for 10 minutes in 8°C water, while the control group subjects sat passively for the same time period. Blood samples were taken before, immediately after, 10 minutes, 24 hours and 48 hours after the training session in a fasted state. Blood lactate, creatine kinase (CK) and lactate dehydrogenase (LDH) enzyme levels were measured. Results: Lactate, CK and LDH levels increased significantly after training (p < 0.001). There were significant interactions between groups and subsequent measurements for CK (p = 0.0012) and LDH (p = 0.0471). There was no significant difference in lactate level between the two groups at any aforementioned time. Conclusion: It seems that CWI after simulated 90-minute soccer training can reduce the values of muscle damage indexes in soccer players.


Retos ◽  
2021 ◽  
Vol 44 ◽  
pp. 95-102
Author(s):  
Zeltzin Nereyda Alonso Ramos ◽  
Blanca Rocío Rangel Colmenero ◽  
Myriam Zarai García Dávila ◽  
Gerardo Enrique Muñoz Maldonado ◽  
José Raul Hoyos Flores ◽  
...  

  Las estrategias que aminoren el dolor, la inflamación y el daño muscular provocados por la actividad física de alta intensidad en atletas son de interés en la recuperación deportiva, por lo que el objetivo del estudio fue conocer el efecto del masaje ZNAR y la inmersión en agua fría a 10° sobre el proceso inflamatorio a través de la interleucina 6 (IL-6), interleucina 10 (IL-10), el factor de necrosis tumoral Alpha (TNF-α), el daño muscular mediante la Creatin Kinasa (CK) y la percepción al dolor muscular a través de la escala visual análoga de dolor (EVA) en jugadores de voleibol. Participaron 19 atletas divididos en un grupo control y un grupo experimental, sometidos a dos protocolos de recuperación (masaje ZNAR e inmersión en agua fría) posterior a un test de inducción a la fatiga. Se cuantifico la IL-6, IL-10, TNF, CK y EVA. Los resultados mostraron cambios significativos (p < .05) en las tomas de recuperación en el comportamiento del proceso inflamatorio, la CK y la percepción al dolor muscular con ambos métodos de recuperación. Conclusión, el Masaje ZNAR favorece a la recuperación de la IL-6 y la IL-10 además de la disminución de la CK y la percepción al dolor muscular.  Abstract: The strategies that reduce pain, inflammation and muscle damage caused by high intensity activity in athletes are of interest in sports recovery, the objective of the study was to know the effect of ZNAR massage and cold water immersion at 10 ° on the inflammatory process through interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor Alpha (TNF-α), muscle damage through Creatine Kinase (CK) and the perception of muscle pain through the visual analoge scale (VAS) in volleyball players. 19 athletes were divided into a control group and an experimental group, submitted to two recovery protocols (ZNAR massage and cold water immersion) after a fatigue induction test. IL-6, IL-10, TNF, CK and EVA were quantified. The results showed significant changes (p < .05) in the recovery shots in the behavior of the inflammatory process, the CK and the perception of muscle pain with both recovery methods. Conclusion, the ZNAR Massage favors the recovery of IL-6 and IL-10 in addition to the decrease in CK and the perception of muscle pain


Sign in / Sign up

Export Citation Format

Share Document