scholarly journals Development of the Technology for Processing Plant Breeding By-Products to Obtain Biosorbent

2020 ◽  
Vol 169 ◽  
pp. 02011
Author(s):  
Tatiana Bauer ◽  
Svetlana Sushkova ◽  
Aleksei Fedorenko ◽  
Ilya Lobzenko ◽  
Anatoly Barakhov ◽  
...  

This study focuses on the potential transforming sunflower husk wastes into innovative green products to be used for the recultivation of contaminated soils. This transformation makes it possible to utilize the large quantity plant breeding by-products to obtain a highly porous biosorbent. Optimal conditions for the preparation of bisorbents can be determined based on measurements of their specific surface and porosity. It is shown that structural characteristics of sorbent depend on conditions of the pyrolysis of primary raw material. Optimal conditions for obtaining biosorbent with a specified proportion of mesoand micropores and high specific surface are performed under three-stage pyrolysis as given by following conditions: sample holding time of 10-30 min, final temperature 700°С, and heating rate 15°С/min. A 3-month incubation study was conducted to investigate its performance in stabilization of copper contamination in Fluvisol. The sequential extraction procedure showed that the 1% sunflower husks biosorbent treatment reduced the mobile pool (exchange and carbon-bonded fractions) of Cu from 8 to 4%, respectively, compared to the contaminated soil. Cu is found to be tightly bonded owing to the increase of the residual and organic matter-bonded metal fractions. Owing to its adsorptive properties, biosorbent amendment of coppercontaminated soils appears as a promising approach to reduce the pollutant mobility and bioavailability.

2012 ◽  
Vol 496 ◽  
pp. 259-262
Author(s):  
Yuan Rui Wang ◽  
Feng Juan Liu ◽  
Guo Jun Qiang ◽  
Jiang Lei Hu

The optimal conditions of prepared magnesium hydroxide using dolomite as raw material were systematically explored by carbonization. The influence between the factors of reactions and the extraction rate of magnesium hydroxide was studied. The structure and composition of product were analyzed by Fourier transform infrared spectrometer, X ray diffraction and electron microscopy. In the conditions, the extraction rate could be up to 90.32%, and its crystal was a hexagonal-type. This method has many kinds of advantages, such as simple operation, low costs of production, eliminating the environmental pollution and comprehensive utilization of by-products.


2021 ◽  
Vol 947 (1) ◽  
pp. 012003
Author(s):  
H Q V Le ◽  
T D Tong ◽  
X C Luu ◽  
X T Le

Abstract The water extraction procedure (WE) was critically selected to extract (+)-catechin and (-)-epicatechin in cashew testa. The effects of different extracting factors, including multiple extraction, extracting temperature, extracting duration, and solvent-material ratio, on catechin amounts were evaluated. Under optimal conditions, a gram of water extract (WE’) contained 151.2±4.7 mg of (+)-catechin and 85.2±2.3 mg of (-)-epicatechin. These values were nearly three-folded compared to raw material, 55.0±1.4 and 31.0±0.6 mg, respectively. By using fractional extraction with ethyl acetate, the amounts of (+)-catechin and (-)-epicatechin per gram of ethyl acetate extract (WE2) in the present extracts respectively increased to 219.4±16.5 and 123.6±8.9 mg.


2005 ◽  
Vol 3 (2) ◽  
pp. 178-189 ◽  
Author(s):  
A. Poutaraud ◽  
P. Girardin

Numerous factors influence the chemical quality of medicinal plants from crop establishment to extraction of raw material. The most important ones are described using the example of Hypericum perforatum. Optimization of these factors contributes to the objective of producing a high-quality drug, and a method consisting of three scientific approaches (technological, agronomical, plant breeding) is presented. All data concerning the plant (biology, physiology and environmental impacts) and the active components and by-products (pathway, localization and stability) are useful to adapt and to develop management sequences. Although plant breeding appears to be the principal way of improvement, and gives good results in terms of resistance to pathogens, active component content and yield; the agronomical and the technological approaches are also very important. The technological approach after harvesting is especially important to avoid degradation of the active components and to induce, in some cases, the transformation of by-products to those molecules sought. This integrated method (plant breeding and agronomical and chemical approaches) requires research on different levels of organization from molecule to field, and includes all processing systems from farmers to chemists.


Author(s):  
Sara Díaz ◽  
Antonio N. Benítez ◽  
Sara Ramírez-Bolaños ◽  
Lidia Robaina ◽  
Zaida Ortega

AbstractThe aim of this work is the optimization of phenolic compound extraction from three by-products of banana crops (rachis, discarded banana, and banana’s pseudostem pulp), as a way to valorize them through a green extraction process. The influence of the temperature and aqueous ethanol concentration (Et-OH) on extract properties (total phenol content (TPC) and antioxidant activity) was firstly analyzed. 78 ℃ and ethanol concentrations close to 50% yielded the best results for the three materials. The equations obtained by the response surface methodology gave a satisfactory description of the experimental data, allowing optimizing the extraction conditions. Under optimized conditions, time influence was then assessed, although this parameter seemed not influence results. Among the three by-products, rachis extract (60% Et-OH, 78 ℃, and 30 min) presented the highest TPC (796 mg gallic acid/100 g of dried material) and antioxidant activity (6.51 mg Trolox equivalents/g of dried material), followed by discarded banana, and pseudostem pulp. Under the optimal conditions, experiments were performed at a larger scale, allowing to determine the extraction yields (EY) and to characterize the extracts. The highest EY was obtained for the rachis (26%), but the extract with the highest activity was obtained for discarded banana (50% Et-OH, 78 ℃, and 60 min), which presented a TPC of 27.26 mg/g extract corresponding to 54.59 mg Trolox equivalents/g extract. This study contributes to the valorization of banana crops residues as a source of polyphenolic compounds with bioactive functions that can be extracted under economic extraction conditions. Graphical abstract


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 448
Author(s):  
Mahrous Awad ◽  
Zhongzhen Liu ◽  
Milan Skalicky ◽  
Eldessoky S. Dessoky ◽  
Marian Brestic ◽  
...  

Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 404
Author(s):  
Alexandru Amărioarei ◽  
Frankie Spencer ◽  
Gefry Barad ◽  
Ana-Maria Gheorghe ◽  
Corina Iţcuş ◽  
...  

Current advances in computational modelling and simulation have led to the inclusion of computer scientists as partners in the process of engineering of new nanomaterials and nanodevices. This trend is now, more than ever, visible in the field of deoxyribonucleic acid (DNA)-based nanotechnology, as DNA’s intrinsic principle of self-assembly has been proven to be highly algorithmic and programmable. As a raw material, DNA is a rather unremarkable fabric. However, as a way to achieve patterns, dynamic behavior, or nano-shape reconstruction, DNA has been proven to be one of the most functional nanomaterials. It would thus be of great potential to pair up DNA’s highly functional assembly characteristics with the mechanic properties of other well-known bio-nanomaterials, such as graphene, cellulos, or fibroin. In the current study, we perform projections regarding the structural properties of a fibril mesh (or filter) for which assembly would be guided by the controlled aggregation of DNA scaffold subunits. The formation of such a 2D fibril mesh structure is ensured by the mechanistic assembly properties borrowed from the DNA assembly apparatus. For generating inexpensive pre-experimental assessments regarding the efficiency of various assembly strategies, we introduced in this study a computational model for the simulation of fibril mesh assembly dynamical systems. Our approach was based on providing solutions towards two main circumstances. First, we created a functional computational model that is restrictive enough to be able to numerically simulate the controlled aggregation of up to 1000s of elementary fibril elements yet rich enough to provide actionable insides on the structural characteristics for the generated assembly. Second, we used the provided numerical model in order to generate projections regarding effective ways of manipulating one of the the key structural properties of such generated filters, namely the average size of the openings (gaps) within these meshes, also known as the filter’s aperture. This work is a continuation of Amarioarei et al., 2018, where a preliminary version of this research was discussed.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 149
Author(s):  
André Olean-Oliveira ◽  
Gilberto A. Oliveira Brito ◽  
Celso Xavier Cardoso ◽  
Marcos F. S. Teixeira

The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1466
Author(s):  
Hafiz Rehan Nadeem ◽  
Saeed Akhtar ◽  
Tariq Ismail ◽  
Piero Sestili ◽  
Jose Manuel Lorenzo ◽  
...  

Heterocyclic aromatic amines (HAAs) are potent carcinogenic compounds induced by the Maillard reaction in well-done cooked meats. Free amino acids, protein, creatinine, reducing sugars and nucleosides are major precursors involved in the production of polar and non-polar HAAs. The variety and yield of HAAs are linked with various factors such as meat type, heating time and temperature, cooking method and equipment, fresh meat storage time, raw material and additives, precursor’s presence, water activity, and pH level. For the isolation and identification of HAAs, advanced chromatography and spectroscopy techniques have been employed. These potent mutagens are the etiology of several types of human cancers at the ng/g level and are 100- to 2000-fold stronger than that of aflatoxins and benzopyrene, respectively. This review summarizes previous studies on the formation and types of potent mutagenic and/or carcinogenic HAAs in cooked meats. Furthermore, occurrence, risk assessment, and factors affecting HAA formation are discussed in detail. Additionally, sample extraction procedure and quantification techniques to determine these compounds are analyzed and described. Finally, an overview is presented on the promising strategy to mitigate the risk of HAAs by natural compounds and the effect of plant extracts containing antioxidants to reduce or inhibit the formation of these carcinogenic substances in cooked meats.


2019 ◽  
Vol 14 (7) ◽  
pp. 1934578X1986290 ◽  
Author(s):  
Massimo Tacchini ◽  
Ilaria Burlini ◽  
Immacolata Maresca ◽  
Alessandro Grandini ◽  
Tatiana Bernardi ◽  
...  

Vitis vinifera L. leaves from pruning are by-products of the wine industry and represent an important source of secondary raw material, thanks to their polyphenols content. Optimization of the extraction processes is a key factor for their valorization, and Design of Experiment (DOE) could be a tool to obtain the most performing extract in terms of polyphenols quality/quantity and bioactivity. Vitis vinifera Lambrusco leaves were subjected to ultrasound-assisted extractions guided by a 23 factorial design. Three independent parameters (% solvent, time of extraction, and solvent:solid ratio) were considered to evaluate the extraction process by analyzing the extraction yield, the total phenolic content (Folin-Ciocalteu assay), and the antioxidant capacity (DPPH assay). Moreover, the content of the main molecules was identified and quantified by reversed-phase high-performance liquid chromatography coupled with diode array detection and mass spectrometry. The DOE highlighted the best extraction conditions that showed slight changes considering the different evaluating parameters. The highest extraction yield was obtained by extraction with 100% water, 60 minutes of extraction time, and 30:1 solvent:solid ratio, but it was neither the richest in polyphenols nor antioxidant capacity. The latter 2 characteristics were associated with the extraction performed using 50% ethanol, 35 minutes of extraction time, and a 20:1 solvent:solid ratio. That extract also exhibited the highest quantity of flavonols.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 584 ◽  
Author(s):  
Mathilde Hirondart ◽  
Natacha Rombaut ◽  
Anne Sylvie Fabiano-Tixier ◽  
Antoine Bily ◽  
Farid Chemat

Nowadays, “green analytical chemistry” challenges are to develop techniques which reduce the environmental impact not only in term of analysis but also in the sample preparation step. Within this objective, pressurized liquid extraction (PLE) was investigated to determine the initial composition of key antioxidants contained in rosemary leaves: Rosmarinic acid (RA), carnosic acid (CA), and carnosol (CO). An experimental design was applied to identify an optimized PLE set of extraction parameters: A temperature of 183 °C, a pressure of 130 bar, and an extraction duration of 3 min enabled recovering rosemary antioxidants. PLE was further compared to conventional Soxhlet extraction (CSE) in term of global processing time, energy used, solvent recovery, raw material used, accuracy, reproducibility, and robustness to extract quantitatively RA, CA, and CO from rosemary leaves. A statistical comparison of the two extraction procedure (PLE and CSE) was achieved and showed no significant difference between the two procedures in terms of RA, CA, and CO extraction. To complete the study showing that the use of PLE is an advantageous alternative to CSE, the eco-footprint of the PLE process was evaluated. Results demonstrate that it is a rapid, clean, and environmentally friendly extraction technique.


Sign in / Sign up

Export Citation Format

Share Document