Low‐cost 1‐Hz resolution bandwidth spectrum analyzer in the 0.1–1000‐MHz frequency range

1988 ◽  
Vol 59 (10) ◽  
pp. 2294-2296
Author(s):  
Koen Clays ◽  
Rik Strobbe ◽  
Andre Persoons
Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4307
Author(s):  
Emanuele Cardillo ◽  
Graziella Scandurra ◽  
Gino Giusi ◽  
Carmine Ciofi

The main requirement for using the Fluctuation Enhanced Sensing technique is the ability to perform low-frequency noise measurements. The portability of the measurement system is also a quite desirable feature not limited to this specific application. In this paper, an approach for the realization of a dual channel spectrum analyzer that is capable of exploring frequencies down to DC, although based on a USB sound card, is proposed. The lower frequency range of the input signals, which is outside the frequency range of the sound board, is upconverted to higher frequencies by means of a very simple modulation board. Then, the entire spectrum is reconstructed numerically by proper elaboration. With the exception of the modulation board, the approach we propose does not rely on any specific hardware. Thanks to the efficiency of the spectra estimation and reconstruction software, which is based on a public domain library, the system can be built on a low-cost computer single board computer, such as the Raspberry PI3. Moreover, when equipped with an optical TCP/IP link, it behaves as a compact spectrum analyzer that along with the device under test can be placed into a shielded environment, thus being isolated from external electromagnetic interferences.


Frequenz ◽  
2019 ◽  
Vol 73 (11-12) ◽  
pp. 355-366
Author(s):  
Martin Frank ◽  
Benedict Scheiner ◽  
Fabian Lurz ◽  
Robert Weigel ◽  
Alexander Koelpin

Abstract This paper presents the design and characterization of linearly polarized low-cost transmitarray antennas with ± 70° azimuth beamforming range in V-band in order to add beam steering functionality to existing radar front ends. The transmitarray antennas are composed of 13 × 13 planar unit-cells. The unit-cells consist of two layers of RO4350B laminate and provide a one bit phase resolution. The desired unit-cell behavior has been validated by simulations and measurements. Eight transmitarrays with different phase distributions have been designed and fabricated to realize different beam steering angles in azimuth. The experimental characterization of the radiation patterns shows the desired performance in the frequency range from 59 GHz to 63 GHz. Additionally, steering angle combinations in azimuth and elevation up to 40° have been realized and successfully demonstrate by measuring the 2D radiation pattern.


Author(s):  
Zhuochen Wang ◽  
Sibo Li ◽  
Ruibin Liu ◽  
Xuecang Geng ◽  
Xiaoning Jiang

Ultrasound imaging with high resolution and large field of depth has been increasingly adopted in medical diagnosis, surgery guidance and treatment assessment because of its relatively low cost, non-invasive and capability of real-time imaging. There is always a tradeoff between the resolution and depth of field in ultrasound imaging. Conventional ultrasound works at a particular frequency, with −6 dB fractional bandwidth of < 100%, limiting the resolution or field of depth in many ultrasound imaging cases. In this paper, a bi-frequency co-linear array covering a frequency range of 5 MHz-20 MHz was investigated to meet the requirements of resolution and depth of field for a broad range of ultrasound imaging applications. As a demonstration, a 31-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real time sectorial scan (S-scan) phantom imaging using a Verasonics system.


2021 ◽  
Vol 263 ◽  
pp. 01013
Author(s):  
Vladimir Buz’ko ◽  
Igor Shamray ◽  
Alexander Goryachko ◽  
Sergei Udodov ◽  
Anatoly Abashin

Rice husk, being a widely available natural plant renewable agricultural resource, can be transformed into effective reinforcing fillers of special concrete and gypsum building materials. The samples of silica from rice husks were synthesized by thermal oxidative pyrolysis and their electromagnetic and microstructural characteristics were investigated. It was found that the rice husk itself is practically EM-wave transparent material in the frequency range of 0.1-7 GHz, while the products of its thermal oxidative pyrolysis have different microwave absorbing properties, depending on the amount of oxidizing agent used. The X-ray powder diffraction data showed the predominant presence of amorphous silica in the samples of rice husk ash with a small amount of α-quartz, α-cristobalite and α-tridymite. At a pyrolysis reaction temperature of rice husk of about 560 ± 20°C, the resulting product, in addition to amorphous silica and crystalline phases of silicon dioxide, contains traces of graphite particles, which leads to a sharp increase in dielectric characteristics and effective microwave absorption. When the temperature of the pyrolysis reaction of rice husk rises above 700°C the EM-wave absorption of such materials decreases. Thus, on the basis of the experiments carried out, the optimal ratios of rice husk and the used oxidizer of ammonium nitrate were revealed to obtain environmentally friendly ecological low-cost powder nanostructured biosilica additives for concrete and gypsum building compositions with increased effective radio absorption in the frequency range of the electromagnetic field above 1 GHz.


2018 ◽  
Vol 7 (1) ◽  
pp. 73-78
Author(s):  
S. Patil ◽  
P. Petkov ◽  
B. Bonev

Every electronics equipment must deal with EMC test. The testing laboratory of electronics equipment for radiation emission must have accurate calibrated antennas. The field strength of total radiated radio frequency is average of all incident signals at given point, this incident spinals originates from various directions. In order to measure three components of all electric field vectors, a tripole antenna is most beneficial over conventional antenna because of it responds to signal coming from multi directions. This paper presents novel three axis wide band calculable rod-dipole antenna with hybrid balun for the range of 900MHz to 3.2GHz frequencies, the proposed antenna is small in size and good electrical characteristics, the Important parameters measured and verified with designed values. Return loss S11 more than -10dB within the frequency range 900MHz to 3.2GHz. The result of this articles are evident that, efficient construction of antenna with low cost, light weight module applicable for EMC pre-compliance test at open field site.


2019 ◽  
Vol 9 (5) ◽  
pp. 4679-4684
Author(s):  
M. Added ◽  
K. Rabaani ◽  
S. Chabaan ◽  
N. Boulejfen

A compact chipless radio frequency identification (RFID) tag-based on slow-wave technology is introduced in this paper. The tag consists of a resonant circuit based on open stub resonators periodically loaded by shunt stubs allowing a coding capacity of 9 bits and operating in a frequency range from 2 to 4GHz. The receiving and transmitting antennas of the tag are particularly designed to minimize the tag size as much as possible. The proposed tag presents a robust bit pattern with a compact and fully printable structure using FR4 substrate for a low-cost tag.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1941
Author(s):  
Inzamam Ahmad ◽  
Sadiq Ullah ◽  
Shakir Ullah ◽  
Usman Habib ◽  
Sarosh Ahmad ◽  
...  

Modern advancements in wearable smart devices and ultra-high-speed terahertz (THz) communication systems require low cost, low profile, and highly efficient antenna design with high directionality to address the propagation loss at the THz range. For this purpose, a novel shape, high gain antenna for THz frequency range applications is presented in this work. The proposed antenna is based on a photonic bandgap (PBG)-based crystal polyimide substrate which gives optimum performance in terms of gain (9.45 dB), directivity (9.99 dBi), and highly satisfactory VSWR (<1) at 0.63 THz. The performance of the antenna is studied on PBGs of different geometrical configurations and the results are compared with the antenna based on the homogeneous polyimide-based substrate. The effects of variations in the dimensions of the PBG unit cells are also studied to achieve a −10 dB bandwidth of 28.97 GHz (0.616 to 0.64 THz).


2014 ◽  
pp. 9-17
Author(s):  
Sergey Y. Yurish

A low-cost, intelligent data acquisition system for quartz crystal microbalance (QCM) and other (superficial SAW and bulk acoustic wave) resonator-based chemical and biosensors described in this article. The system is based on the novel modified method of the dependent count and allows obtaining high metrological performances: programmable and constant in all frequency range relative error of measurement up to 0,0005 % (5 ppm); nonredundant, reduced conversion time of measurement and wide frequency range from 0.05 Hz to 9 MHz (144 MHz with prescaling). The developed system allows measuring variations of the resonance frequency shift for QCM sensors working in liquids and gases. The described low-cost data acquisition system is based on novel integrated circuit of universal frequency-to-digital converter. This design approach has eliminated much of the hardware: there is no need for a microcontroller and complex sensor interfacing electronics, as it is directly compatible with PC computers.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 1
Author(s):  
Mahesh Mudavath ◽  
K. Hari Kishore

This paper describes a layout of a CMOS Low Noise Amplifier for reconfigurable packages which include GPS, GSM Wi-Fi applications. The improvement of a notably linear Radio front-stop, able to function with Galileo and GPS satellite signals suitable for coexisting in a mobile opposed environment for area based offerings, pleasing the fundamental necessities for a mass market product which includes low cost, low footprint, good accuracy, low strength intake and high sensitivity. primarily based on a wideband enter matching, the LNA stages cowl all band of hobby even as reaching a great change-off between excessive gain, low noise parent and coffee electricity intake. The complete simulation analysis of the circuit results in the frequency range of 1.4 GHz to 2 GHz. The noise figure is 1.8 dB at 1.4GHz and rises to 3.4 dB at 2 GHz. The input return and output return losses (S11, S22) of the LNA at a frequency range between 1.4 GHz and 2 GHz are S11= -12 dB, S22 =-44.73 dB at 1.77 GHz and S22 =-26.47 dB at 2 GHz. The overall gain of the LNA (S21) is 13 dB at 1.4025 GHz, 3rd order input intercept point (IIP3) = -3.16 dBm and -1dB compression point is -12.56 dBm. Input Impedance of 50Ω, 3dB Power Bandwidth of 450MHz, and Power Dissipation of 2.7mW at 1.2V power supply.


Sign in / Sign up

Export Citation Format

Share Document