scholarly journals Chorea-related mutations in PDE10A result in aberrant compartmentalization and functionality of the enzyme

2019 ◽  
Vol 117 (1) ◽  
pp. 677-688 ◽  
Author(s):  
Gonzalo S. Tejeda ◽  
Ellanor L. Whiteley ◽  
Tarek Z. Deeb ◽  
Roland W. Bürli ◽  
Stephen J. Moss ◽  
...  

A robust body of evidence supports the concept that phosphodiesterase 10A (PDE10A) activity in the basal ganglia orchestrates the control of coordinated movement in human subjects. Although human mutations in the PDE10A gene manifest in hyperkinetic movement disorders that phenocopy many features of early Huntington’s disease, characterization of the maladapted molecular mechanisms and aberrant signaling processes that underpin these conditions remains scarce. Recessive mutations in the GAF-A domain have been shown to impair PDE10A function due to the loss of striatal PDE10A protein levels, but here we show that this paucity is caused by irregular intracellular trafficking and increased PDE10A degradation in the cytosolic compartment. In contrast to GAF-A mutants, dominant mutations in the GAF-B domain of PDE10A induce PDE10A misfolding, a common pathological phenotype in many neurodegenerative diseases. These data demonstrate that the function of striatal PDE10A is compromised in disorders where disease-associated mutations trigger a reduction in the fidelity of PDE compartmentalization.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Laurie P Sutton ◽  
Cesare Orlandi ◽  
Chenghui Song ◽  
Won Chan Oh ◽  
Brian S Muntean ◽  
...  

Stress can be a motivational force for decisive action and adapting to novel environment; whereas, exposure to chronic stress contributes to the development of depression and anxiety. However, the molecular mechanisms underlying stress-responsive behaviors are not fully understood. Here, we identified the orphan receptor GPR158 as a novel regulator operating in the prefrontal cortex (PFC) that links chronic stress to depression. GPR158 is highly upregulated in the PFC of human subjects with major depressive disorder. Exposure of mice to chronic stress also increased GPR158 protein levels in the PFC in a glucocorticoid-dependent manner. Viral overexpression of GPR158 in the PFC induced depressive-like behaviors. In contrast GPR158 ablation, led to a prominent antidepressant-like phenotype and stress resiliency. We found that GPR158 exerts its effects via modulating synaptic strength altering AMPA receptor activity. Taken together, our findings identify a new player in mood regulation and introduce a pharmacological target for managing depression.


Author(s):  
Yan Wang ◽  
Fei Wang ◽  
Hong Lu ◽  
Yu Liu ◽  
Chuanzao Mao

Abstract Phosphorus (P) is an essential macronutrient for plant growth and development. Low phosphate (Pi) availability is a limiting factor for plant growth and yield. To cope with a complex and changing environment, plants have evolved elaborate mechanisms for regulating Pi uptake and use. Recently, the molecular mechanisms of plant Pi signaling have become clearer. Plants absorb Pi from the soil through their roots and transfer Pi to various organs or tissues through phosphate transporters, which are precisely controlled at the transcript and protein levels. Here, we summarize the recent progress on the molecular regulatory mechanism of phosphate transporters in Arabidopsis and rice, including the characterization of functional transporters, regulation of transcript levels, protein localization, and turnover of phosphate transporters. A more in-depth understanding of plant adaptation to a changing Pi environment will facilitate the genetic improvement of plant P efficiency.


Neurology ◽  
2019 ◽  
Vol 93 (8) ◽  
pp. e815-e822 ◽  
Author(s):  
Anastasia Zekeridou ◽  
Thomas Kryzer ◽  
Yong Guo ◽  
Anhar Hassan ◽  
Vanda Lennon ◽  
...  

ObjectiveTo describe a novel antibody biomarker of neurologic paraneoplastic autoimmunity specific for phosphodiesterase 10A (PDE10A), a striatum-enriched phosphodiesterase, and to characterize the clinical phenotype of patients with PDE10A immunoglobulin G (IgG).MethodsWe describe 7 patients with autoantibodies specific for PDE10A identified in the Mayo Clinic Neuroimmunology Laboratory. Patient specimens (sera, 7; CSF, 4) produced identical basal ganglia‐predominant synaptic staining of murine brain tissue by indirect immunofluorescence. The autoantigen was identified by immunoprecipitation and mass spectrometry as PDE10A, and confirmed by antigen-specific recombinant Western blot and cell-based assays, and immune absorption experiments.ResultsThe median patient age was 70 years (range 66–76); 4 were men. Four patients with clinical information available had movement disorders (hyperkinetic in 3 [chorea, ballismus, dystonia] and parkinsonism in 1). All patients but one had cancer (lung [adenocarcinoma 1, squamous cell carcinoma 1, poorly differentiated mesenchymal carcinoma 1], renal adenocarcinoma 2, and pancreatic adenocarcinoma 1). Two of the 7 patients developed hyperkinetic movement disorders during treatment with immune checkpoint inhibitors (nivolumab and pembrolizumab), though none of 26 cancer control patients treated with immune checkpoint inhibitors harbored PDE10A IgG in their serum. MRIs from those 2 patients with hyperkinetic movement disorders demonstrated fluid-attenuated inversion recovery/T2 basal ganglia hyperintensities, and their CSF harbored unique oligoclonal bands. One of those 2 patients had substantial improvement after corticosteroids. One patient's renal adenocarcinoma expressed PDE10A by immunohistochemistry.ConclusionsPDE10A IgG defines a novel rare neurologic autoimmune syndrome and expands the spectrum of diagnosable paraneoplastic CNS disorders. The intracellular location of PDE10A suggests a T-cell-mediated pathology targeting cells displaying MHC1-bound PDE10A peptides.


2020 ◽  
Vol 26 (12) ◽  
pp. 1251-1262 ◽  
Author(s):  
Octavio Binvignat ◽  
Jordi Olloquequi

: The global burden of neurodegenerative diseases is alarmingly increasing in parallel to the aging of population. Although the molecular mechanisms leading to neurodegeneration are not completely understood, excitotoxicity, defined as the injury and death of neurons due to excessive or prolonged exposure to excitatory amino acids, has been shown to play a pivotal role. The increased release and/or decreased uptake of glutamate results in dysregulation of neuronal calcium homeostasis, leading to oxidative stress, mitochondrial dysfunctions, disturbances in protein turn-over and neuroinflammation. : Despite the anti-excitotoxic drug memantine has shown modest beneficial effects in some patients with dementia, to date, there is no effective treatment capable of halting or curing neurodegenerative diseases such as Alzheimer’s disease, Parkinson disease, Huntington’s disease or amyotrophic lateral sclerosis. This has led to a growing body of research focusing on understanding the mechanisms associated with the excitotoxic insult and on uncovering potential therapeutic strategies targeting these mechanisms. : In the present review, we examine the molecular mechanisms related to excitotoxic cell death. Moreover, we provide a comprehensive and updated state of the art of preclinical and clinical investigations targeting excitotoxic- related mechanisms in order to provide an effective treatment against neurodegeneration.


Author(s):  
Debanjan Kundu ◽  
Vikash Kumar Dubey

Abstract:: Various neurodegenerative disorders have molecular origin but some common molecular mechanisms. In the current scenario, there are very few treatment regimens present for advanced neurodegenerative diseases. In this context, there is an urgent need for alternate options in the form of natural compounds with an ameliorating effect on patients. There have been individual scattered experiments trying to identify potential values of various intracellular metabolites. Purines and Pyrimidines, which are vital molecules governing various aspects of cellular biochemical reactions, have been long sought as crucial candidates for the same, but there are still many questions that go unanswered. Some critical functions of these molecules associated with neuromodulation activities have been identified. They are also known to play a role in foetal neurodevelopment, but there is a lacuna in understanding their mechanisms. In this review, we have tried to assemble and identify the importance of purines and pyrimidines, connecting them with the prevalence of neurodegenerative diseases. The leading cause of this class of diseases is protein misfolding and the formation of amyloids. A direct correlation between loss of balance in cellular homeostasis and amyloidosis is yet an unexplored area. This review aims at bringing the current literature available under one umbrella serving as a foundation for further extensive research in this field of drug development in neurodegenerative diseases.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


Author(s):  
Saleh A. Almatroodi ◽  
Mansoor Ali Syed ◽  
Arshad Husain Rahmani

Background:: Curcumin, an active compound of turmeric spice is one of the most-studies natural compounds and have been widely recognized as chemopreventive agents. Several molecular mechanisms have been proven, curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as inhibition of carcinogenesis process. Objective:: To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. Methods:: A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed central and Google scholar for the implication of curcumin in cancer management along with special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com and www.freshpatents.com. Result:: Recent studies based on cancer cells have proven that curcumin have potential effects against cancer cells, prevent the growth of cancer and act as cancer therapeutic agents. Besides, curcumin exerted anticancer effects through inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. Conclusion:: Accumulating evidences suggest that curcumin has potentiality to inhibit cancer growth, induced apoptosis and modulate various cell signalling pathways molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy and safe dose in the management of various cancers.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 741
Author(s):  
Javier Plaza ◽  
M. Remedios Morales-Corts ◽  
Rodrigo Pérez-Sánchez ◽  
Isabel Revilla ◽  
Ana M. Vivar-Quintana

Nowadays, there is a growing demand for high-quality vegetal protein food products, such as pulses and lentils in particular. However, there is no scientific evidence on the nutritional and morphometric characterization of the main lentil cultivars in the Western Mediterranean area. For this reason, the aim of this work is to carry out a morphometric and nutritional characterization of the main Spanish lentil cultivars. Nutrient content assessment was performed on dry matter. The results showed that all studied cultivars are large and heavy lentils, except for the cultivar “Pardina”. They have high protein levels, ranging from 21% to 25%, which is higher than those found in any other pulse, as well as a high carbohydrate content, greater than 59% in all cases. Fiber content was higher than expected in “Armuña” and “Rubia Castellana” cultivars, ranging from 6% to 6.6%, and exceptionally high in the case of the cultivar “Pardina”, which reached 7.8%. Conversely, very low values were found for fat content, varying between 0.5% and 0.9%. Ca, Fe and Mg levels were remarkably higher (from 550 ppm to 851 ppm, from 98 ppm to 139 ppm and from 790 ppm to 989 ppm, respectively) than those found for other lentil cultivars, especially the high Mg content in the cultivars “Jaspeada” and “Microjaspeada”, both above 955 ppm. Clear differentiation was found between the cultivars “Rubia Castellana”, “Pardina” and those included in the Protected Geographical Indication (PGI) “Lenteja de la Armuña”. Overall, lentil cultivars included in the PGI “Lenteja de la Armuña” showed better morphometric and nutritional characteristics than cultivars “Pardina” or “Rubia Castellana”.


2020 ◽  
Vol 11 (1) ◽  
pp. 241-250
Author(s):  
Zhenyu Li ◽  
Guangqian Ding ◽  
Yudi Wang ◽  
Zelong Zheng ◽  
Jianping Lv

AbstractTranscription factor EB (TFEB)-based gene therapy is a promising therapeutic strategy in treating neurodegenerative diseases by promoting autophagy/lysosome-mediated degradation and clearance of misfolded proteins that contribute to the pathogenesis of these diseases. However, recent findings have shown that TFEB has proinflammatory properties, raising the safety concerns about its clinical application. To investigate whether TFEB induces significant inflammatory responses in the brain, male C57BL/6 mice were injected with phosphate-buffered saline (PBS), adeno-associated virus serotype 8 (AAV8) vectors overexpressing mouse TFEB (pAAV8-CMV-mTFEB), or AAV8 vectors expressing green fluorescent proteins (GFPs) in the barrel cortex. The brain tissue samples were collected at 2 months after injection. Western blotting and immunofluorescence staining showed that mTFEB protein levels were significantly increased in the brain tissue samples of mice injected with mTFEB-overexpressing vectors compared with those injected with PBS or GFP-overexpressing vectors. pAAV8-CMV-mTFEB injection resulted in significant elevations in the mRNA and protein levels of lysosomal biogenesis indicators in the brain tissue samples. No significant changes were observed in the expressions of GFAP, Iba1, and proinflammation mediators in the pAAV8-CMV-mTFEB-injected brain compared with those in the control groups. Collectively, our results suggest that AAV8 successfully mediates mTFEB overexpression in the mouse brain without inducing apparent local inflammation, supporting the safety of TFEB-based gene therapy in treating neurodegenerative diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


Sign in / Sign up

Export Citation Format

Share Document