scholarly journals Characterization of a Novel Isoform of Caspase-9 That Inhibits Apoptosis

2001 ◽  
Vol 276 (15) ◽  
pp. 12190-12200 ◽  
Author(s):  
James M. Angelastro ◽  
Nah Yong Moon ◽  
David X. Liu ◽  
An-Suei Yang ◽  
Lloyd A. Greene ◽  
...  

We have identified a novel isoform of rat caspase-9 in which the C terminus of full-length caspase-9 is replaced with an alternative peptide sequence. Casp-9-CTD (where CTD is carboxyl-terminal divergent) is expressed in multiple tissues, with the relative highest expression observed in ovary and heart. Casp-9-CTD was found primarily in the cytoplasm and was not detected in the nucleus. Structural predictions suggest that in contrast to full-length caspase-9, casp-9-CTD will not be processed. Our model is supported by reduced protease activity of casp-9-CTD preparationsin vitroand by the lack of detectable processing of casp-9-CTD proenzyme or the induction of cell death following transfection into cells. Both neuronal and non-neuronal cell types transfected with casp-9-CTD were resistant to death evoked by trophic factor deprivation or DNA damage. In addition, cytosolic lysates prepared from cells permanently expressing exogenous casp-9-CTD were resistant to caspase induction by cytochromecin reconstitution assays. Taken together, our observations indicate that casp-9-CTD acts as a dominant-negative variant. Its expression in various tissues indicates a physiological role in regulating cell death.

2007 ◽  
Vol 292 (2) ◽  
pp. E523-E532 ◽  
Author(s):  
Naibedya Chattopadhyay ◽  
Kyeong-Hoon Jeong ◽  
Shozo Yano ◽  
Su Huang ◽  
Jian L. Pang ◽  
...  

The factors controlling the migration of mammalian gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus are not well understood. We studied whether the extracellular calcium-sensing receptor (CaR) promotes migration/chemotaxis of GnRH neurons. We demonstrated expression of CaR in GnRH neurons in the murine basal forebrain and in two GnRH neuronal cell lines: GT1-7 (hypothalamus derived) and GN11 (olfactory bulb derived). Elevated extracellular Ca2+concentrations promoted chemotaxis of both cell types, with a greater effect in GN11 cells. This effect was CaR mediated, as, in both cell types, overexpression of a dominant-negative CaR attenuated high Ca2+-stimulated chemotaxis. We also demonstrated expression of a β-chemokine, monocyte chemoattractant protein-1 (MCP-1), and its receptor, CC motif receptor-2 (CCR2), in the hypothalamic GnRH neurons as well as in GT1-7 and GN11 cells. Exogenous MCP-1 stimulated chemotaxis of both cell lines in a dose-dependent fashion; the effect was greater in GN11 than in GT1-7 cells, consistent with the higher CCR2 mRNA levels in GN11 cells. Activating the CaR stimulated MCP-1 secretion in GT1-7 but not in GN11 cells. MCP-1 secreted in response to CaR stimulation is biologically active, as conditioned medium from GT1-7 cells treated with high Ca2+promoted chemotaxis of GN11 cells, and this effect was partially attenuated by a neutralizing antibody to MCP-1. Finally, in the preoptic area of anterior hypothalamus, the number of GnRH neurons was ∼27% lower in CaR-null mice than in mice expressing the CaR gene. We conclude that the CaR may be a novel regulator of GnRH neuronal migration likely involving, in part, MCP-1.


1996 ◽  
Vol 16 (9) ◽  
pp. 5178-5185 ◽  
Author(s):  
O Eizenberg ◽  
A Faber-Elman ◽  
E Gottlieb ◽  
M Oren ◽  
V Rotter ◽  
...  

This study demonstrated the involvement of the tumor suppressor protein p53 in differentiation and programmed cell death of neurons and oligodendrocytes, two cell types that leave the mitotic cycle early in development and undergo massive-scale cell death as the nervous system matures. We found that primary cultures of rat oligodendrocytes and neurons, as well as of the neuronal PC12 pheochromocytoma cell line, constitutively express the p53 protein. At critical points in the maturation of these cells in vitro, the subcellular localization of p53 changes: during differentiation it appears mainly in the nucleus, whereas in mature differentiated cells it is present mainly in the cytoplasm. These subcellular changes were correlated with changes in levels of immunoprecipitated p53. Infection of cells with a recombinant retrovirus encoding a C-terminal p53 miniprotein (p53 DD), previously shown to act as a dominant negative inhibitor of endogenous wild-type p53 activity, inhibited the differentiation of oligodendrocytes and of PC12 cells and protected neurons from spontaneous apoptotic death. These findings suggest that p53, upon receiving appropriate signals, is recruited into the nucleus, where it plays a regulatory role in directing primary neurons', oligodendrocytes, and PC12 cells toward either differentiation or apoptosis in vitro.


2021 ◽  
Vol 22 (13) ◽  
pp. 6785
Author(s):  
Valeria Sogos ◽  
Paola Caria ◽  
Clara Porcedda ◽  
Rafaela Mostallino ◽  
Franca Piras ◽  
...  

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 361
Author(s):  
Gabriel Gonzalez ◽  
Jiří Grúz ◽  
Cosimo Walter D’Acunto ◽  
Petr Kaňovský ◽  
Miroslav Strnad

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson’s disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.


2021 ◽  
Author(s):  
Andrew D. Beale ◽  
Priya Crosby ◽  
Utham K. Valekunja ◽  
Rachel S. Edgar ◽  
Johanna E. Chesham ◽  
...  

AbstractCellular circadian rhythms confer daily temporal organisation upon behaviour and physiology that is fundamental to human health and disease. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body. Being naturally anucleate, RBC circadian rhythms share key elements of post-translational, but not transcriptional, regulation with other cell types. The physiological function and developmental regulation of RBC circadian rhythms is poorly understood, however, partly due to the small number of appropriate techniques available. Here, we extend the RBC circadian toolkit with a novel biochemical assay for haemoglobin oxidation status, termed “Bloody Blotting”. Our approach relies on a redox-sensitive covalent haem-haemoglobin linkage that forms during cell lysis. Formation of this linkage exhibits daily rhythms in vitro, which are unaffected by mutations that affect the timing of circadian rhythms in nucleated cells. In vivo, haemoglobin oxidation rhythms demonstrate daily variation in the oxygen-carrying and nitrite reductase capacity of the blood, and are seen in human subjects under controlled laboratory conditions as well as in freely-behaving humans. These results extend our molecular understanding of RBC circadian rhythms and suggest they serve an important physiological role in gas transport.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 250 ◽  
Author(s):  
Adel Alhazzani ◽  
Prasanna Rajagopalan ◽  
Zaher Albarqi ◽  
Anantharam Devaraj ◽  
Mohamed Hessian Mohamed ◽  
...  

Cell-therapy modalities using mesenchymal stem (MSCs) in experimental strokes are being investigated due to the role of MSCs in neuroprotection and regeneration. It is necessary to know the sequence of events that occur during stress and how MSCs complement the rescue of neuronal cell death mediated by [Ca2+]i and reactive oxygen species (ROS). In the current study, SH-SY5Y-differentiated neuronal cells were subjected to in vitro cerebral ischemia-like stress and were experimentally rescued from cell death using an MSCs/neuronal cell coculture model. Neuronal cell death was characterized by the induction of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and -12, up to 35-fold with corresponding downregulation of anti-inflammatory cytokine transforming growth factor (TGF)-β, IL-6 and -10 by approximately 1 to 7 fold. Increased intracellular calcium [Ca2+]i and ROS clearly reaffirmed oxidative stress-mediated apoptosis, while upregulation of nuclear factor NF-B and cyclo-oxygenase (COX)-2 expressions, along with ~41% accumulation of early and late phase apoptotic cells, confirmed ischemic stress-mediated cell death. Stressed neuronal cells were rescued from death when cocultured with MSCs via increased expression of anti-inflammatory cytokines (TGF-β, 17%; IL-6, 4%; and IL-10, 13%), significantly downregulated NF-B and proinflammatory COX-2 expression. Further accumulation of early and late apoptotic cells was diminished to 23%, while corresponding cell death decreased from 40% to 17%. Low superoxide dismutase 1 (SOD1) expression at the mRNA level was rescued by MSCs coculture, while no significant changes were observed with catalase (CAT) and glutathione peroxidase (GPx). Interestingly, increased serotonin release into the culture supernatant was proportionate to the elevated [Ca2+]i and corresponding ROS, which were later rescued by the MSCs coculture to near normalcy. Taken together, all of these results primarily support MSCs-mediated modulation of stressed neuronal cell survival in vitro.


2004 ◽  
Vol 1 (3) ◽  
pp. 263-273 ◽  
Author(s):  
DMITRI LEONOUDAKIS ◽  
STEVEN P. BRAITHWAITE ◽  
MICHAEL S. BEATTIE ◽  
ERIC C. BEATTIE

Injury and disease in the CNS increases the amount of tumor necrosis factor α (TNFα) that neurons are exposed to. This cytokine is central to the inflammatory response that occurs after injury and during prolonged CNS disease, and contributes to the process of neuronal cell death. Previous studies have addressed how long-term apoptotic-signaling pathways that are initiated by TNFα might influence these processes, but the effects of inflammation on neurons and synaptic function in the timescale of minutes after exposure are largely unexplored. Our published studies examining the effect of TNFα on trafficking of AMPA-type glutamate receptors (AMPARs) in hippocampal neurons demonstrate that glial-derived TNFα causes a rapid (<15 minute) increase in the number of neuronal, surface-localized, synaptic AMPARs leading to an increase in synaptic strength. This indicates that TNFα-signal transduction acts to facilitate increased surface localization of AMPARs from internal postsynaptic stores. Importantly, an excess of surface localized AMPARs might predispose the neuron to glutamate-mediated excitotoxicity and excessive intracellular calcium concentrations, leading to cell death. This suggests a new mechanism for excitotoxic TNFα-induced neuronal death that is initiated minutes after neurons are exposed to the products of the inflammatory response.Here we review the importance of AMPAR trafficking in normal neuronal function and how abnormalities that are mediated by glial-derived cytokines such as TNFα can be central in causing neuronal disorders. We have further investigated the effects of TNFα on different neuronal cell types and present new data from cortical and hippocampal neurons in culture. Finally, we have expanded our investigation of the temporal profile of the action of this cytokine relevant to neuronal damage. We conclude that TNFα-mediated effects on AMPAR trafficking are common in diverse neuronal cell types and very rapid in their onset. The abnormal AMPAR trafficking elicited by TNFα might present a novel target to aid the development of new neuroprotective drugs.


2021 ◽  
Author(s):  
Surbhi Sharma ◽  
Asgar Hussain Ansari ◽  
Soundhar Ramasamy

AbstractThe circadian clock regulates vital cellular processes by adjusting the physiology of the organism to daily changes in the environment. Rhythmic transcription of core Clock Genes (CGs) and their targets regulate these processes at the cellular level. Circadian clock disruption has been observed in people with neurodegenerative disorders like Alzheimer’s and Parkinson’s. Also, ablation of CGs during development has been shown to affect neurogenesis in both in vivo and in vitro models. Previous studies on the function of CGs in the brain have used knock-out models of a few CGs. However, a complete catalog of CGs in different cell types of the developing brain is not available and it is also tedious to obtain. Recent advancements in single-cell RNA sequencing (scRNA-seq) has revealed novel cell types and elusive dynamic cell states of the developing brain. In this study by using publicly available single-cell transcriptome datasets we systematically explored CGs-coexpressing networks (CGs-CNs) during embryonic and adult neurogenesis. Our meta-analysis reveals CGs-CNs in human embryonic radial glia, neurons and also in lesser studied non-neuronal cell types of the developing brain.


1969 ◽  
Vol 40 (1) ◽  
pp. 124-133
Author(s):  
Lina Vanessa Becerra ◽  
Hernán José Pimienta

Programmed cell death occurs as a physiological process during development. In the brain and spinal cord this event determines the number and location of the different cell types. In adulthood, programmed cell death or apoptosis is more restricted but it may play a major role in different acute and chronic pathological entities. However, in contrast to other tissues where apoptosis has been widely documented from a morphological point of view, in the central nervous system complete anatomical evidence of apoptosis is scanty. In spite of this there is consensus about the activation of different signal systems associated to programmed cell death. In the present article we attempt to summarize the main apoptotic pathways so far identified in nervous tissue. Considering that apoptotic pathways are multiple, the neuronal cell types are highly diverse and specialized and that neuronal response to injury and survival depends upon tissue context, (i.e., preservation of connectivity, glial integrity and cell matrix, blood supply and trophic factors availability) what is relevant for the apoptotic process in a sector of the brain may not be important in another.


Sign in / Sign up

Export Citation Format

Share Document