scholarly journals Utilization of14C-labelledBacillus subtilisandEscherichia coliby sheep

1970 ◽  
Vol 24 (1) ◽  
pp. 129-144 ◽  
Author(s):  
N. J. Hoogenraad ◽  
F. J. R. Hird ◽  
R. G. White ◽  
R. A. Leng

1.Bacillus subtilisandEscherichia coliwere grown on14C-labelled glucose and used for the preparation of labelled whole cells, cell walls, cell contents and peptidoglycan.2. The radioactive samples were injected into the abomasum of sheep and the14C appearing in expired air, plasma glucose, urine and faeces was determined. Whole cells were also injected into the rumen and the incorporation of14C into volatile fatty acids was measured.3. All the bacterial preparations, including cell walls, were extensively digested and absorbed, Less than 15% of the radioactivity was recovered in the faeces.4. Up to 20% of the radioactivity injected was recovered in expired carbon dioxide with only 2.4–8.1% passing through the glucose pool.5. It has been calculated that under the conditions of the experiment 18.5 % of the total glucose entering the body pool of glucose in 24 h was derived from bacterial carbon.

2022 ◽  
Author(s):  
Francesco Palumbo ◽  
Giuseppe Bee ◽  
Paolo Trevisi ◽  
Marion Girard

Abstract Hemicelluloses (HC) are polysaccharides constituents of the cell walls of plants. They are fermented in the gut to produce volatile fatty acids (VFA). The present study investigated the effects of decreasing HC level in sow's lactation diet on sow performances, offspring development and milk composition. From 110 days (d) of gestation until weaning (26±0.4 d post-farrowing), 40 Swiss Large White sows were assigned to one of the four dietary treatments: (1) T12 (HC: 120.6 g/kg), (2) T11 (HC: 107.6 g/kg), (3) T9 (HC: 86.4g/kg) and (4) T7 (HC: 71.9 g/kg). Milk was collected at 3 and 17d of lactation. At birth, piglets were divided into two groups according to their birthweight (BtW): normal (N-BtW; BtW > 1.20 kg) or low (L-BtW; BtW ≤ 1.20 kg). Decreased HC levels in the maternal diet linearly increased (P ≤ 0.05) the body weight of L-BtW piglets at two weeks post-weaning and linearly decreased (P ≤ 0.05) diarrhoea incidence and duration in this category. The concentrations of copper, threonine and VFA, as well as the proportion of butyrate, in milk linearly increased (P ≤ 0.05), whereas lactose content linearly decreased (P ≤ 0.05) with decreased HC in the maternal diet. The present study provides evidence that decreasing HC level in sow's lactation diet can positively affect the composition and VFA profile of milk and ultimately favour the growth and health of L-BtW piglets.


1957 ◽  
Vol 1957 ◽  
pp. 3-15 ◽  
Author(s):  
D. G. Armstrong ◽  
K. L. Blaxter ◽  
N. McC. Graham

The work of the late Sir Joseph Barcroft and his collaborators (see Elsden & Phillipson, 1948) left little doubt that, in ruminants, the end products of the bacterial dissimilation of dietary carbohydrate included large amounts of the steam-volatile fatty acids—acetic, propionic and butyric acids. More recently, el Shazly (1952a, b) has shown that the steam-volatile fatty acids also arise together with ammonia during the bacterial breakdown of amino-acids in the rumen. Studies by Pfander & Phillipson (1953) and Schambye (1955) further indicate that the acids are absorbed from the digestive tract in amounts that suggest they make a major contribution to the energy requirement of the animal. Quantitative data relative to the amounts absorbed, however, are difficult to obtain. Carroll & Hungate (1954) have calculated that in cattle some 6,000-12,000 Cal. of energy are available from the acids produced by fermentation in the rumen. With sheep, Phillipson & Cuthbertson (1956) have calculated from the results of Schambye (1951a, b; 1955) that at least 600-1,200 Cal. of energy in the form of steam-volatile fatty acids could be absorbed every 24 hrs. Since the fasting heat production of the steer is about 6,500 Cal./24 hrs. and that of the sheep about 1,100 Cal./24 hrs. it is clear that if the fatty acids can be utilised efficiently by the body tissues, they could make a major contribution to the energy requirements, at least those for maintenance.


2017 ◽  
Vol 21 (1) ◽  
pp. 26 ◽  
Author(s):  
EllIN HARlIA HARlIA ◽  
MARlINA ET ◽  
MASITA R ◽  
RAHMAH KN

The natural methane formed by bacteria in anaerobic conditions is known as biogenic gas. Gas trapped in coal, formed through thermogenesis as well as biogenesisis known as coal-bed methane (CBM). The availability of organic material as decomposition of this material into methane is continuously required for the production of methane in the coal aquifer. The aim of this research was to investigate whether or not cattle feces bacteria were able to grow and produce methane in coal. Parameters measured were Volatile Fatty Acids (VFA) and the production of biogas, such as nitrogen, hydrogen, carbon dioxide, and methane. Explorative method was used and data obtained was analyzed by descriptive approach. The results showed that the bacteria found in the feces survived in the coal and produce biogas. On day 2 when the process was at the acidogenesis phase, it produced VFA with the largest component of acetic acid. Acetic acid would undergo decarboxylation and reduction of CO2 followed by reactions of H2and CO2 to produce methane (CH4) and carbon dioxide (CO2) as the final products. ,


1972 ◽  
Vol 27 (3) ◽  
pp. 553-560 ◽  
Author(s):  
J. L. Clapperton ◽  
J. W. Czerkawski

1. Propane-1:2-diol (loog/d) was infused through a cannula into the rumen of sheep receiving a ration of hay and dried grass. The concentration of volatile fatty acids, propanediol, lactic acid and of added polyethylene glycol, and the pH of the rumen contents were measured. The energy metabolism of the sheep was also determined.2. Most of the propanediol disappeared from the rumen within 4 h of its infusion. The infusion of propanediol resulted in a 10% decrease in the concentration of total volatile acids; the concentration of acetic acid decreased by about 30%, that of propionic acid increased by up to 60% and there was no change in the concentration of butyric acid.3. The methane production of the sheep decreased by about 9% after the infusion of propanediol and there were increases in the oxgyen consumption, carbon dioxide production and heat production of the animals; each of these increases was equivalent to about 40% of the theoretical value for the complete metabolism of 100 g propanediol.4. It is concluded that, when propanediol is introduced into the rumen, a proportion is metabolized in the rumen and a large proportion is absorbed directly. Our thanks are due to Dr J. H. Moore for helpful discussions, to Mr D. R. Paterson, Mr J. R. McDill and Mr C. E. Park for looking after the animals and to Miss K. M. Graham, Miss A. T. McKay and Mrs C. E. Ramage for performing the analyses.


2016 ◽  
Vol 82 (13) ◽  
pp. 3801-3807 ◽  
Author(s):  
Youri M. van Nuland ◽  
Gerrit Eggink ◽  
Ruud A. Weusthuis

ABSTRACTThe enzyme system AlkBGT fromPseudomonas putidaGPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells ofEscherichia coliexpressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6and C7fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids.IMPORTANCEFatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinantEscherichia colicells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C6to C10) esterified with ethanol, propanol, or butanol were applied. This is a promising production platform for polymer building blocks that uses renewable substrates and mild reaction conditions.


2008 ◽  
Vol 71 (10) ◽  
pp. 2138-2143 ◽  
Author(s):  
JOSE A. MENDIOLA ◽  
SUSANA SANTOYO ◽  
ALEJANDRO CIFUENTES ◽  
GUILLERMO REGLERO ◽  
ELENA IBÁÑEZ ◽  
...  

The objective of this research was to evaluate the antimicrobial activity of carbon dioxide extracts of the unicellular biflagellated green alga Dunaliella salina against Escherichia coli, Staphylococcus aureus, Candida albicans, and Aspergillus niger. The effects of different extraction pressures ranging from 185 to 442 bar and extraction temperatures ranging from 9.8 to 45.2°C on the extracts' composition and consequently on their antimicrobial activities were investigated. The extracts were analyzed by gas chromatography–mass spectrometry in order to identify the compounds responsible for the antimicrobial activity detected. Fourteen different volatile compounds and several fatty acids were identified. The highest antimicrobial activity was obtained using 314 bar and 9.8°C. Under these conditions, the presence of an indolic derivative that had never been reported in D. salina was detected in the extract, together with polyunsaturated fatty acids and compounds related to carotene metabolism, such as β-ionone and neophytadiene, with known antimicrobial activity.


1976 ◽  
Vol 35 (1) ◽  
pp. 175-179
Author(s):  
A. Tong ◽  
R. F. Fishert

1.Escherichia coliwas grown on14C-labelled glucose and fractions representing ‘whole cells’, ‘cell contents’ and ‘cell walls’ were administered orally to rats.2.14C appearing as14CO2in the expired air and as unidentified radioactive products in urine and faeces was measured until the cumulative recovery showed little change with time.3. All fractions were digested. The digestibility of cell waslls was less than that of the other fractions.4. There was considerable variation among individual rats.


2020 ◽  
Vol 82 (6) ◽  
pp. 35-42
Author(s):  
O.S. Brovarska ◽  
◽  
L.D. Varbanets ◽  
S.V. Kalinichenko ◽  
◽  
...  

Lipopolysaccharides (LPS) are specific components of the cell envelope of gram-negative bacteria, located at the external surface of their outer membrane and performing a number of important physicochemical and biological functions. The widespread in nature are representatives of Enterobacteriaceae family. Among them there are saprotrophic, useful human symbionts, as well as causative agents of acute intestinal infections. The role of saprophytic intestinal microbiota is not limited only to its participation in the digestion process. The endotoxin released as a result of self-renewal of the cell pool of Escherichia coli partially enters the portal blood and performs antigenic stimulation of the macroorganism. In addition, a small amount of endotoxin can also be released by live gram-negative bacteria, which, given the large population of E. coli in the intestine, can create a sufficiently high concentration of endotoxin. Aim. The study of composition and biological activity of lipopolysaccharides of new E. coli strains, found in the human body. Methods. The objects of investigation were strains of Escherichia coli, isolated from healthy patients at the epidemiological center in Kharkiv. Lipopolysaccharides were extracted from dried cells by 45% phenol water solution at 65–68°С by Westphal and Jann method. The amount of carbohydrates was determined by phenol-sulfuric method. Carbohydrate content was determined in accordance to the calibration curve, which was built using glucose as a standard. The content of nucleic acids was determined by Spirin method, protein − by Lowry method. Serological activity of LPS was investigated by double immunodiffusion in agar using the method of Ouchterlony. Results. In all studied E. coli LPS (2884, 2890, 2892), glucose was dominant monosaccharide (40.5, 41.1, 67.3%, respectively). LPS also contained rhamnose (1.8, 22.9, 1.6%, respectively), ribose (3.5, 6.1, 3.6%, respectively) and galactose (4.1, 20.2, 18.3%, respectively). E. coli 2884 LPS also contained arabinose (1.0%) and mannose (44.8%), while E. coli strains 2890 and 2892 LPS contained heptose (9.7 and 7.8%, respectively). Lipid A composition was presented by fatty acids with a carbon chain length from C12 to C18. As the predominant components were 3-hydroxytetradecanoic (39.2–51.3%) as well as tetradecanoic (23.1–28.5%), dodecanoic (8.9–10.9%), hexadecanoic (4.3–7.2%) and octadecanoic (1.8–2.4%) acids. Unsaturated fatty acids: hexadecenoic (2.0–17.9%) and octadecenoic (3.4–4.2%) have been also identified. It was found that octadecanoic and octadecenoic acids were absent in the LPS of 2884 and 2892 strains, respectively. In SDS-PAAG electrophoresis, a bimodal distribution typical for S-forms of LPS was observed. The studied LPS were toxic and pyrogenic. Double immunodiffusion in agar by Ouchterlony revealed that the tested LPS exhibited an antigenic activity in the homologous system. In heterologous system E. coli 2892 LPS had cross reactivity with LPS of E. coli 2890 and М-17. Since the structure of the O-specific polysaccharide (OPS) of E. coli M-17 was established by us earlier, the results of serological reactions make it possible to suggest an analogy of the E. coli 2892 and 2890 OPS structures with that of E. coli М-17 and their belonging to the same serogroup. Conclusions. The study of the composition and biological activity of LPS of new strains of Escherichia coli 2884, 2890 and 2892, isolated from the body of almost healthy patients, expands our knowledge about the biological characteristics of the species.


2010 ◽  
Vol 56 (8) ◽  
pp. 667-675 ◽  
Author(s):  
Ross M.S. Lowe ◽  
Krysty Munns ◽  
L. Brent Selinger ◽  
Linda Kremenik ◽  
Danica Baines ◽  
...  

Escherichia coli O157:H7 is a pathogenic, gram-negative bacterium that causes diarrhea, hemorrhagic colitis, and can lead to fatal hemolytic uremic syndrome in humans. We examined the persistence of E. coli O157:H7 lineages I and II in feces held at 4, 12, and 25 °C, from animals fed either grain or hay diets. Three strains of each lineage I and II were inoculated into grain-fed or hay-fed feces, and their persistence was monitored over 28 days. No significant differences in E. coli O157:H7 survival between the 2 lineages in both fecal types was found at the examined temperatures. Volatile fatty acids were higher in grain-fed than in hay-fed feces, resulting in consistently lower pH in the grain-fed feces at 4, 12 and 25 °C. Regardless of lineage type, E. coli O157:H7 CFUs were significantly higher in grain-fed than in hay-fed feces at 4 and 25 °C. Escherichia coli O157:H7 survival was highest in grain-fed feces at 25 °C up to 14 days. Our results indicate that the 2 lineages of E. coli O157:H7 do not differ in their persistence; however, it appears that temperature and feces type both affect the survival of the pathogen.


Sign in / Sign up

Export Citation Format

Share Document