scholarly journals IL-9 as a mediator of Th17-driven inflammatory disease

2009 ◽  
Vol 206 (8) ◽  
pp. 1653-1660 ◽  
Author(s):  
Elizabeth C. Nowak ◽  
Casey T. Weaver ◽  
Henrietta Turner ◽  
Sakhina Begum-Haque ◽  
Burkhard Becher ◽  
...  

We report that like other T cells cultured in the presence of transforming growth factor (TGF) β, Th17 cells also produce interleukin (IL) 9. Th17 cells generated in vitro with IL-6 and TGF-β as well as purified ex vivo Th17 cells both produced IL-9. To determine if IL-9 has functional consequences in Th17-mediated inflammatory disease, we evaluated the role of IL-9 in the development and progression of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. The data show that IL-9 neutralization and IL-9 receptor deficiency attenuates disease, and this correlates with decreases in Th17 cells and IL-6–producing macrophages in the central nervous system, as well as mast cell numbers in the regional lymph nodes. Collectively, these data implicate IL-9 as a Th17-derived cytokine that can contribute to inflammatory disease.

2010 ◽  
Vol 391 (1) ◽  
Author(s):  
Nashmil Emami ◽  
Eleftherios P. Diamandis

Abstract Transforming growth factor β1 (TGFβ1) has been implicated as a key contributor of immunosuppression in seminal plasma. The biochemical mechanisms that lead to production of active seminal TGFβ1 are not fully understood. It is plausible that TGFβ1 activation is partly induced simultaneously with the release of motile spermatozoa following liquefaction of the semen coagulum. Several members of the kallikrein-related peptidase (KLK) family are involved in the regulation of semen liquefaction. This study examines the involvement of these KLKs in TGFβ1 activation in vitro and ex vivo, in seminal plasma. Latent TGFβ1 was rapidly activated by KLK14. The latency-associated propeptide (LAP) was shown to be cleaved by KLK14 into small peptide fragments, providing a possible mechanism for TGFβ1 activation. KLK14 also cleaved the latent TGFβ binding protein 1 (LTBP1). KLK1, 2, and 5 might also contribute to TGFβ1 activation by nicking the LAP motif and inducing conformational changes that aid in subsequent processing of LAP or through LTBP1 cleavage. Our study provides strong evidence for the involvement of multiple members of the seminal KLK cascade in activation of latent TGFβ1 in seminal plasma. These findings might have clinical implications in infertility treatment of cases with concurrent delayed liquefaction and TGFβ1-related semen antigenicity.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Paweł Piatek ◽  
Magdalena Namiecinska ◽  
Małgorzata Domowicz ◽  
Marek Wieczorek ◽  
Sylwia Michlewska ◽  
...  

Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS) mediated by autoreactive lymphocytes. The role of autoreactive lymphocytes in the CNS demyelination is well described, whereas very little is known about their role in remyelination during MS remission. In this study, we identified a new subpopulation of myelin-specific CD49d+CD154+ lymphocytes presented in the peripheral blood of MS patients during remission, that proliferated in vitro in response to myelin peptides. These lymphocytes possessed the unique ability to migrate towards maturing oligodendrocyte precursor cells (OPCs) and synthetize proinflammatory chemokines/cytokines. The co-culture of maturing OPCs with myelin-specific CD49d+CD154+ lymphocytes was characterized by the increase in proinflammatory chemokine/cytokine secretion that was not only a result of their cumulative effect of what OPCs and CD49d+CD154+ lymphocytes produced alone. Moreover, maturing OPCs exposed to exogenous myelin peptides managed to induce CD40-CD154-dependent CD49d+CD154+ lymphocyte proliferation. We confirmed, in vivo, the presence of CD49d+CD154+ cells close to maturating OPCs and remyelinating plaque during disease remission in the MS mouse model (C57Bl/6 mice immunized with MOG35-55) by immunohistochemistry. Three weeks after an acute phase of experimental autoimmune encephalomyelitis, CD49d+/CD154+ cells were found to be co-localized with O4+ cells (oligodendrocyte progenitors) in the areas of remyelination identified by myelin basic protein (MBP) labelling. These data suggested that myelin-specific CD49d+CD154+ lymphocytes present in the brain can interfere with remyelination mediated by oligodendrocytes probably as a result of establishing proinflammatory environment.


2018 ◽  
Vol 51 (2) ◽  
pp. 1700386 ◽  
Author(s):  
Pierre-Simon Bellaye ◽  
Chiko Shimbori ◽  
Toyoshi Yanagihara ◽  
David A. Carlson ◽  
Philip Hughes ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90β, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90β was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-β1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90β stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF.


Author(s):  
Alessia Furgiuele ◽  
Marco Cosentino ◽  
Marco Ferrari ◽  
Franca Marino

AbstractMultiple sclerosis (MS) is the most common chronic autoimmune disease of the central nervous system. Efficacy of treatments for MS is associated with risk of adverse effects, and effective and well-tolerated drugs remain a major unmet need. Cannabis (Cannabis sativa L., fam. Cannabaceae) and cannabinoids are popular among MS patients to treat spasticity and pain. Cannabinoids are endowed with remarkable immunomodulating properties, and in particular the non-psychotropic cannabinoid cannabidiol (CBD) is increasingly recognized as anti-inflammatory and immunosuppressive, nevertheless with excellent tolerability even at high doses. In this systematic review, we retrieved and critically evaluated available evidence regarding the immune and disease-modifying effects of CBD in experimental autoimmune encephalomyelitis (EAE) and in MS. Evidence in rodent models of EAE strongly supports CBD as effective, while clinical evidence is still limited and usually negative, due to paucity of studies and possibly to the use of suboptimal dosing regimens. Better characterization of targets acted upon by CBD in MS should be obtained in ex vivo/in vitro studies in human immune cells, and higher doses should be tested in well-designed clinical trials with clinically relevant efficacy endpoints.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
Lina Y Alkaissi ◽  
Martin E Winberg ◽  
Stéphanie DS Heil ◽  
Staffan Haapaniemi ◽  
Pär Myrelid ◽  
...  

Abstract Background The first visible signs of Crohn’s disease (CD) are microscopic erosions over the follicle-associated epithelium (FAE). The aim of the study was to investigate the effects of human α-defensin 5 (HD5) on adherent-invasive Escherichia coli LF82 translocation and HD5 secretion after LF82 exposure in an in vitro model of human FAE and in human FAE ex vivo. Methods An in vitro FAE-model was set up by the coculture of Raji B cells and Caco-2-cl1 cells. Ileal FAE from patients with CD and controls were mounted in Ussing chambers. The effect of HD5 on LF82 translocation was studied by LF82 exposure to the cells or tissues with or without incubation with HD5. The HD5 secretion was measured in human FAE exposed to LF82 or Salmonella typhimurium. The HD5 levels were evaluated by immunofluorescence, immunoblotting, and ELISA. Results There was an increased LF82 translocation across the FAE-model compared with Caco-2-cl1 (P < 0.05). Incubation of cell/tissues with HD5 before LF82 exposure reduced bacterial passage in both models. Human FAE showed increased LF82 translocation in CD compared with controls and attenuated passage after incubation with sublethal HD5 in both CD and controls (P < 0.05). LF82 exposure resulted in a lower HD5 secretion in CD FAE compared with controls (P < 0.05), whereas Salmonella exposure caused equal secretion on CD and controls. There were significantly lower HD5 levels in CD tissues compared with controls. Conclusions Sublethal HD5 reduces the ability of LF82 to translocate through FAE. The HD5 is secreted less in CD in response to LF82, despite a normal response to Salmonella. This further implicates the integrated role of antimicrobial factors and barrier function in CD pathogenesis.


2007 ◽  
Vol 282 (38) ◽  
pp. 27713-27720 ◽  
Author(s):  
Mete Erdogan ◽  
Ambra Pozzi ◽  
Neil Bhowmick ◽  
Harold L Moses ◽  
Roy Zent

TC21(R-Ras2), a Ras-related GTPase with transforming potential similar to H-, K- and N-Ras, is implicated in the pathogenesis of human cancers. Transforming growth factor β (TGF-β), a cytokine that plays a significant role in modulating tumorigenesis, normally prevents uncontrolled cell proliferation but paradoxically induces proliferation in H-Ras-transformed cancer cells. Although TC21 activates some pathways that mediate cellular transformation by the classical Ras proteins, the mechanisms through which TC21 induces tumor formation and how TGF-β regulates TC21 transformed cells is not known. To better understand the role of TC21 in cancer progression, we overexpressed an activated G23V mutant of TC21 in a nontumorigenic murine mammary epithelial (EpH4) cell line. Mutant TC21-expressing cells were significantly more oncogenic than cells expressing activated G12V H-Ras both in vivo and in vitro. TC21-induced transformation and proliferation required activation of p38 MAPK, mTOR (the mammalian target of rapamycin), and phosphoinositide 3-kinase but not Akt/PKB. Transformation by TC21 rendered EpH4 cells insensitive to the growth inhibitory effects of TGF-β, and the soft agar growth of these cells was increased upon TGF-β stimulation. Despite losing responsiveness to TGF-β-mediated growth inhibition, both Smad-dependent and independent pathways remained intact in TC21-transformed cells. Thus, overexpression of active TC21 in EpH4 cells induces tumorigenicity through the phosphoinositide 3-kinase, p38 MAPK, and mTOR pathways, and these cells lose their sensitivity to the normal growth inhibitory role of TGF-β.


2011 ◽  
Vol 301 (4) ◽  
pp. F793-F801 ◽  
Author(s):  
Abolfazl Zarjou ◽  
Shanzhong Yang ◽  
Edward Abraham ◽  
Anupam Agarwal ◽  
Gang Liu

Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.


Reproduction ◽  
2011 ◽  
Vol 142 (4) ◽  
pp. 581-591 ◽  
Author(s):  
Claire Glister ◽  
Leanne Satchell ◽  
Phil G Knight

Evidence supports local roles for transforming growth factor β superfamily members including activins and bone morphogenetic proteins (BMP) in follicle development. Access of these ligands to signalling receptors is likely modulated by extracellular binding proteins (BP). In this study, we comparedex vivoexpression of four BPs (chordin, gremlin, noggin and follistatin) in granulosal (GC) and theca interna (TC) compartments of developing bovine antral follicles (1–18 mm). Effects of FSH and IGF on BMP and BP expression by cultured GC, and effects of LH and BMPs on BP expression by cultured TC were also examined. Follicular expression of all four BP transcripts was higher in GC than TC compartments (P<0.001) a finding confirmed by immunohistochemistry. Follicle category affected (P<0.01) gremlin and follistatin mRNA abundance, with a significant cell-type×follicle category interaction for chordin, follistatin and noggin. Noggin transcript abundance was lower (P<0.05) in GC of large ‘E-active’ than ‘E-inactive’ follicles while follistatin mRNA level was higher (P<0.01). FSH enhanced CYP19, FSHR, INHBA and follistatin by GC without affecting BMP or BMP–BP expression. IGF increased CYP19 and follistatin, reduced BMP4, noggin and gremlin but did not affect chordin orFSHRmRNA levels. LH increased TC androgen secretion but had no effect on BMP or BP expression. BMPs uniformly suppressed TC androgen production whilst increasing chordin, noggin and gremlin mRNA levels up to 20-fold (P<0.01). These findings support the hypothesis that extracellular BP, mostly from GC, contribute to the regulation of intrafollicular BMP/activin signalling. Enhancement of thecal BP expression by BMP implies an autoregulatory feedback role to prevent excessive signalling.


2018 ◽  
Vol 11 ◽  
pp. 117906441876788 ◽  
Author(s):  
Lynn Roy ◽  
Alexander Bobbs ◽  
Rachel Sattler ◽  
Jeffrey L Kurkewich ◽  
Paige B Dausinas ◽  
...  

Cancer stem cells (CSCs) are an attractive therapeutic target due to their predicted role in both metastasis and chemoresistance. One of the most commonly agreed on markers for ovarian CSCs is the cell surface protein CD133. CD133+ ovarian CSCs have increased tumorigenicity, resistance to chemotherapy, and increased metastasis. Therefore, we were interested in defining how CD133 is regulated and whether it has a role in tumor metastasis. Previously we found that overexpression of the transcription factor, ARID3B, increased the expression of PROM1 (CD133 gene) in ovarian cancer cells in vitro and in xenograft tumors. We report that ARID3B directly regulates PROM1 expression. Importantly, in a xenograft mouse model of ovarian cancer, knockdown of PROM1 in cells expressing exogenous ARID3B resulted in increased survival time compared with cells expressing ARID3B and a control short hairpin RNA. This indicated that ARID3B regulation of PROM1 is critical for tumor growth. Moreover, we hypothesized that CD133 may affect metastatic spread. Given that the peritoneal mesothelium is a major site of ovarian cancer metastasis, we explored the role of PROM1 in mesothelial attachment. PROM1 expression increased adhesion to mesothelium in vitro and ex vivo. Collectively, our work demonstrates that ARID3B regulates PROM1 adhesion to the ovarian cancer metastatic niche.


Sign in / Sign up

Export Citation Format

Share Document