Plasma surface engineering for manmade soft materials: A review

Author(s):  
Dirk Hegemann ◽  
Sandra Gaiser

Abstract Manmade soft materials are important in a wide range of technological applications and play a key role in the development of future technologies, mainly at the interface of synthetic and biological components. They include gels and hydrogels, elastomers, structural and packaging materials, micro and nanoparticles as well as biological materials. Soft materials can be distinguished from liquids owing to their defined shape and from hard materials by the deformability of their shape. This review article provides an overview of recent progress on the plasma engineering and processing of softer materials, especially in the area of synthesis, surface modification, etching, and deposition. The article aims to demonstrate the extensive range of plasma surface engineering as used to form, modify, and coat soft materials focusing on material properties and potential applications. In general, the plasma provides highly energetic, non-equilibrium conditions at material surfaces requiring to adjust the conditions for plasma-surface interaction to account for the specifics of soft matter, which holds independent of the used plasma source. Plasma-induced crosslinking and polymerization of liquids is discussed to transform them into gel-like materials as well as to modify the surface region of viscous liquids. A major field covers the plasma surface engineering of manmade soft materials with the help of gaseous reactive species yielding ablation, nanostructuring, functionalization, crosslinking, stiffening, and/or deposition to obtain demanded surface properties or adhesion to dissimilar materials. Finally, plasma engineering of rigid materials is considered to induce surface softening for the enhanced contact with tissues, to allow interaction in aqueous media, and to support bonding to soft matter. The potential and future perspectives of plasma engineering will be discussed in this review to contribute to a higher knowledge of plasma interaction with sensitive materials such as soft matter.

2021 ◽  
Author(s):  
Xiaoyue Ni ◽  
Yun Bai ◽  
Heling Wang ◽  
Yeguang Xue ◽  
Yuxin Pan ◽  
...  

Abstract Dynamic shape-morphing soft materials systems are ubiquitous in living organisms; they are also of rapidly increasing relevance to emerging technologies in soft machines1–4, flexible electronics5–7, and smart medicines8,9. Soft matter equipped with responsive components can switch between designed shapes or structures, but cannot support the types of dynamic morphing capabilities needed to reproduce natural, continuous processes of interest for many applications10–27. Challenges lie in the development of schemes to reprogram target shapes post fabrication, especially when complexities associated with the operating physics and disturbances from the environment can prohibit the use of deterministic theoretical models to guide inverse design and control strategies3,28–32. Here, we present a mechanical metasurface constructed from a matrix of filamentary metal traces, driven by reprogrammable, distributed Lorentz forces that follow from passage of electrical currents in the presence of a static magnetic field. The resulting system demonstrates complex, dynamic morphing capabilities with response times within 0.1 s. Implementing an in-situ stereo-imaging feedback strategy with a digitally controlled actuation scheme guided by an optimization algorithm, yields surfaces that can self-evolve into a wide range of 3-dimensional (3D) target shapes with high precision, including an ability to morph against extrinsic or intrinsic perturbations. These concepts support a data-driven approach to the design of dynamic, soft matter, with many unique characteristics.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Ingrid Membrillo Solis ◽  
Tetiana Orlova ◽  
Karolina Bednarska ◽  
Piotr Lesiak ◽  
Tomasz R. Woliński ◽  
...  

AbstractPersistent homology is an effective topological data analysis tool to quantify the structural and morphological features of soft materials, but so far it has not been used to characterise the dynamical behaviour of complex soft matter systems. Here, we introduce structural heterogeneity, a topological characteristic for semi-ordered materials that captures their degree of organisation at a mesoscopic level and tracks their time-evolution, ultimately detecting the order-disorder transition at the microscopic scale. We show that structural heterogeneity tracks structural changes in a liquid crystal nanocomposite, reveals the effect of confined geometry on the nematic-isotropic and isotropic-nematic phase transitions, and uncovers physical differences between these two processes. The system used in this work is representative of a class of composite nanomaterials, partially ordered and with complex structural and physical behaviour, where their precise characterisation poses significant challenges. Our developed analytic framework can provide both a qualitative and quantitative characterisation of the dynamical behaviour of a wide range of semi-ordered soft matter systems.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1329-C1329
Author(s):  
Michael Sztucki ◽  
Manfred Burghammer ◽  
Oleg Konovalov ◽  
Edward Mitchell ◽  
Theyencheri Narayanan

Consumer products based on soft matter technology often exhibit macroscopic properties which are strongly dependent on their micro- and nano-structures extending over multiple size scales. Synchrotron scattering techniques are ideally suited for probing these multilevel structures and deliver complementary and in some cases unique information as compared to real space methods like confocal microscopy, cryo-electron microscopy or atomic force microscopy. The European Synchrotron Radiation Facility (ESRF) is a world-leading synchrotron light source which operates several state-of-the-art instruments for the investigation of soft materials and offers expertise to academic and industrial users. Fast and flexible access for proprietary experiments with a modular, fine-tuned service is guaranteed. A range of dedicated sample environments which mimic industrial processing conditions are available. This presentation will illustrate the state-of-the-art performance of the following synchrotron scattering techniques by recent examples of industrial relevance. Simultaneous small and wide angle X-ray scattering (SAXS/WAXS) is a powerful method to determine the microstructure and phase behavior of multi-component systems like detergents, food products, pharmaceutical components, polymer composites, etc. The high photon flux translates to high throughput measurements, while the high degree of collimation and resolution permit to elucidate a wide range of length scales from a few Angstroms up to micron scale. Scanning microbeam SAXS/WAXS and single micro-crystal/fiber diffraction (µXRD) allows elucidating the local nanostructure of very small objects like micro-specimens of composite organic/inorganic materials, teeth, bones, micromechanical parts, polymer fibers, micro fluidics, etc. with micro/nanometric real space resolution. X-ray reflectivity (XR) and grazing incidence diffraction/scattering (GID /GISAXS) can reveal the nanoscale structure and complexity of nano-structured complex fluids at interfaces, organic films, biological membranes, etc.


2015 ◽  
Vol 60 (3) ◽  
pp. 2077-2084
Author(s):  
Xuebang Wu ◽  
Changsong Liu

Abstract The general trend in soft matter is to study systems of increasing complexity covering a wide range in time and frequency. Mechanical spectroscopy is a powerful tool for understanding the structure and relaxation dynamics of these materials over a large temperature range and frequency scale. In this work, we collect a few recent applications using low-frequency mechanical spectroscopy for elucidating the structural changes and relaxation dynamics in soft matter, largely based on the author’s group. We illustrate the potential of mechanical spectroscopy with three kinds of soft materials: colloids, polymers and granular systems. Examples include structural changes in colloids, segmental relaxations in amorphous polymers, and resonant dissipation of grain chains in three-dimensional media. The present work shows that mechanical spectroscopy has been applied as a necessary and complementary tool to study the dynamics of such complex systems.


2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Yuwang Liu ◽  
Zhuang Ge ◽  
Shangkui Yang ◽  
Ian D. Walker ◽  
Zhaojie Ju

Continuous-bodied “trunk and tentacle” robots have increased self-adaptability and obstacle avoidance capabilities, compared with traditional, discrete-jointed, robots with large rigid links. In particular, continuous-bodied robots have obvious advantages in grasping objects across a wide range of external dimensions. Not only can they grasp objects using end effectors like traditional robots, but their bodies can also be regarded as a gripping device, and large objects with respect to the robot’s scale can be captured by the entire structure of the robots themselves. Existing trunk-like robots have distributed multidrive actuation and are often manufactured using soft materials, which leads to a complex actuator system that also limits their potential applications in dangerous and extreme environments. This paper introduces a new type of elephant’s trunk robot with very few driving constraints. The robot consists of a series of novel underactuated linkage units. With a single-motor drive, the robot can achieve stable grasping of objects of different shapes and sizes. The proposed robot simplifies the requirements of the sensing and control systems during the operation process and has the advantage of accomplishing the capture task without determining the exact shape and position of the target object. It is especially suitable for operations such as non-cooperative target capture in extremely dangerous environments, including those in outer space. Based on theoretical analysis and model design, a trunk robot prototype was developed, and a comprehensive experimental study of the bending/extension and grasping operation functions was conducted to verify the validity of the proposed robot design.


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1566
Author(s):  
Oliver J. Pemble ◽  
Maria Bardosova ◽  
Ian M. Povey ◽  
Martyn E. Pemble

Chitosan-based films have a diverse range of potential applications but are currently limited in terms of commercial use due to a lack of methods specifically designed to produce thin films in high volumes. To address this limitation directly, hydrogels prepared from chitosan, chitosan-tetraethoxy silane, also known as tetraethyl orthosilicate (TEOS) and chitosan-glutaraldehyde have been used to prepare continuous thin films using a slot-die technique which is described in detail. By way of preliminary analysis of the resulting films for comparison purposes with films made by other methods, the mechanical strength of the films produced was assessed. It was found that as expected, the hybrid films made with TEOS and glutaraldehyde both show a higher yield strength than the films made with chitosan alone. In all cases, the mechanical properties of the films were found to compare very favorably with similar measurements reported in the literature. In order to assess the possible influence of the direction in which the hydrogel passes through the slot-die on the mechanical properties of the films, testing was performed on plain chitosan samples cut in a direction parallel to the direction of travel and perpendicular to this direction. It was found that there was no evidence of any mechanical anisotropy induced by the slot die process. The examples presented here serve to illustrate how the slot-die approach may be used to create high-volume, high-area chitosan-based films cheaply and rapidly. It is suggested that an approach of the type described here may facilitate the use of chitosan-based films for a wide range of important applications.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 318
Author(s):  
Paula García Milla ◽  
Rocío Peñalver ◽  
Gema Nieto

Moringa oleifera belongs to the Moringaceae family and is the best known of the native Moringa oleifera genus. For centuries, it has been used as a system of Ayurvedic and Unani medicine and has a wide range of nutritional and bioactive compounds, including proteins, essential amino acids, carbohydrates, lipids, fibre, vitamins, minerals, phenolic compounds, phytosterols and others. These characteristics allow it to have pharmacological properties, including anti-diabetic, anti-inflammatory, anticarcinogenic, antioxidant, cardioprotective, antimicrobial and hepatoprotective properties. The entire Moringa oleifera plant is edible, including its flowers, however, it is not entirely safe, because of compounds that have been found mainly in the root and bark, so the leaf was identified as the safest. Moringa oleifera is recognised as an excellent source of phytochemicals, with potential applications in functional and medicinal food preparations due to its nutritional and medicinal properties; many authors have experimented with incorporating it mainly in biscuits, cakes, brownies, meats, juices and sandwiches. The results are fascinating, as the products increase their nutritional value; however, the concentrations cannot be high, as this affects the organoleptic characteristics of the supplemented products. The aim of this study is to review the application of Moringa oleifera in bakery products, which will allow the creation of new products that improve their nutritional and functional value.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 818
Author(s):  
Jonas Richter ◽  
Moritz Kuhtz ◽  
Andreas Hornig ◽  
Mohamed Harhash ◽  
Heinz Palkowski ◽  
...  

Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.


Sign in / Sign up

Export Citation Format

Share Document