scholarly journals Effect of electrical poling on the structural, dielectric and photoluminescence properties of small concentration of Ho+3 substituted NBT

2021 ◽  
Vol 2070 (1) ◽  
pp. 012016
Author(s):  
Abhinav Kumar ◽  
Venkata Seshaiah Katta ◽  
Sai Santosh Kumar Raavi ◽  
Saket Asthana

Abstract The effect of electrical poling on the room temperature structural, dielectric and photoluminescence properties of small concentration (i.e. 0.5 mole%) of Ho+3 substituted sodium bismuth titanate ferroelectric material (Na0.5Bi0.495Ho0.005TiO3 abbreviated as NBT-0.5Ho) has been investigated. Its crystal structure was found to be the mixture of two phases of rhombohedral (R3c) and monoclinic (Cc) in which monoclinic (Cc) coexisted as major phase. Comparative study of X-ray diffraction (XRD) patterns of electrically poled and unpoled specimens of NBT-0.5Ho revealed that electric field irreversibly transformed crystal structural of dominant Cc (≈-94.05% phase fraction) phase to R3c (≈70.6% phase fraction) as major phase. Dielectric value and its dispersion with frequency were significantly decreased in poled specimen which is ascribed to electric field driven structural change. Two photoluminescence (PL) emissions at 655nm and 756nm were obtained in NBT-0.5Ho. PL intensity was considerably tuned in effect of electrical poling in term of quenching. Obtain quenching is correlated with induced structural ordering towards higher symmetry phase (R3c) in effect of electric poling which is confirmed from XRD analysis. Obtained additional functionality of photoluminescence in the NBT-0.5Ho ferroelectric material and its tuning in effect of electric field opens the possibility in the material for optoelectronic devices applications.

2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


1998 ◽  
Vol 4 (S2) ◽  
pp. 342-343 ◽  
Author(s):  
S. D. Walck ◽  
P. Ruzakowski-Athey

The analysis of Selected Area Diffraction (SAD) patterns that are collected from a single phase material having sufficient crystallites to provide continuous rings is relatively straightforward. However, when this condition is not met and there may be several phases present having rings of a spotty nature, the pattern is complex and can be quite difficult to analyze manually because of the vast number of discrete spots. WinJade from MDI is an X-ray diffraction (XRD) analysis program with an Electron Diffraction Program Module (EDPM) that can be used to aid in the analysis of SAD patterns. The EDPM produces Integrated Circular Density Plots (ICDP), which are one-dimensional intensity profiles plotted as a function of equivalent XRD 20 values or crystal d-spacings. These ICDP's can be overlayed with XRD patterns or with reference lines from the NIST and JCPDS crystalline databases for direct comparisons.


2012 ◽  
Vol 531-532 ◽  
pp. 512-518 ◽  
Author(s):  
Ye Qing Chen ◽  
Joo Hyun Lee ◽  
Sung Wook Park ◽  
Byung Kee Moon ◽  
Byung Chun Choi ◽  
...  

In this paper, we report a successful synthesis of CaWO4:Eu3+ phosphor via an ethanol assisted hydrothermal process. X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to investigate the growth of the products. The water and ethanol volume ratio is found to have extraordinary effect on the particle size and morphological appearance. Flower like ~ 1µm superstructures can be obtained with mixed solution of w/e of 50/50 at 120 °C hydrothermal sysnthesis for 12 h. High concentration of ethanol in aqueous solution was discovered to have a tendency in limiting the interaction between the small particles for crystallization. Temperature and time experiments were also performed to further investigate the growth mechanism of the ethanol assisted hydrothermal process. The photoluminescence properties of flower like CaWO4:Eu3+ has also been investigated.


2008 ◽  
Vol 22 (27) ◽  
pp. 2699-2707 ◽  
Author(s):  
SAADAT A. SIDDIQI ◽  
RABIA SIDDIQUI ◽  
SALAMAT ALI

Samples of YBa 2 Cu 3 O 7-δ superconducting ceramic were prepared and characterized by resistivity measurements using the four probe method and structural analysis using X-ray diffraction (XRD). XRD-patterns show the presence of orthorhombic Y -123 phase with a small fraction of secondary phase, YBa 2 Cu 3 O 5. Samples were irradiated with gamma (γ) rays using Co 60 source with five successive doses of 2.5 Mrad. A monotonic increase in the Tc0 value was observed for radiation dosage up to 10 Mrad. When exposed to even higher γ-doses, the Tc0 value leveled off at a saturation value or decreased. XRD-analysis shows slightly changed values of the lattice constants and a mild shift of diffraction peaks towards a lower 2θ value. These observations indicate structural changes in YBa 2 Cu 3 O 7-δ induced upon gamma irradiation. The present work describes our experimental findings and attempts to offer a theoretical explanation for the effects observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Marwa Ammar ◽  
Walid Oueslati ◽  
Nejmeddine Chorfi ◽  
Hafsia Ben Rhaiem

Interlamellar space organization of low-charge montmorillonite was studied by modeling of X-ray diffraction (XRD) patterns recorded under controlled relative humidity (RH) conditions on Ni saturated specimens. The quantitative XRD investigation, based on an indirect method consisting of the comparison of experimental00lreflections with the other calculated from structural models, is used to characterize eventual nanostructural changes alongc*axis of Ni-exchanged montmorillonite. This method allowed us to determine, respectively, the relative layer types contribution, the layer thickness, nanoconfiguration of the interlamellar space, and position, amount, and organization of water molecules and exchangeable cations. Obtained theoretical models exhibit heterogeneous hydration state which is the dominating character detected all over studied cycles. Along RH cycle a modification in the main structure of the host materials is performed and the presence of a mixed layer structure (MLS) is noted. The hydration hysteresis at the low and the high RH range can be explained by fluctuations in the water retention mechanism and hydration heterogeneities created within the smectite crystallite.


2016 ◽  
Vol 16 (4) ◽  
pp. 3857-3860 ◽  
Author(s):  
Siling Guo ◽  
Chunyan Cao ◽  
Renping Cao

Through a hydrothermal method, 1 mol% Eu3+ doped NaYF4 and KYF4 micro/nanocrystals have been synthesized. The materials were characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM) images, room temperature photoluminescence (PL) excitation and emission spectra, and luminescent dynamic decay curves. The XRD analysis suggested the crystalline structures of the obtained samples. The FE-SEM images indicated the morphology and size of the obtained samples. The PL spectra illustrate the optical properties of Eu3+ in the two samples. Since it is sensitive to the local environment of the ion, the Eu3+ presents different optical properties in the NaYF4 and KYF4 materials.


Cerâmica ◽  
2018 ◽  
Vol 64 (372) ◽  
pp. 623-626
Author(s):  
H. Onoda ◽  
S. Fujikado

Abstract A novel red pigment, sodium manganese phosphate (NaMnPO4), imitating natrophilite, was synthesized from manganese carbonate by heating under various conditions. The powders obtained were investigated by X-ray diffraction (XRD) analysis, infrared spectroscopy, ultraviolet-visible reflectance spectroscopy, and L*a*b* color space. Samples synthesized at 500-800 °C presented XRD patterns associated with NaMnPO4. By heating at a higher temperature, the samples exhibited lighter color. The sample synthesized at 700 °C indicated the highest a* value. Furthermore, the effects of varying relative amounts of constituents were also studied. The temperature and period of heating, volume of water, and phosphate content affected the color phase of the pigments.


2011 ◽  
Vol 364 ◽  
pp. 368-371 ◽  
Author(s):  
Ibrahim Norfadhilah ◽  
Mohamad Hasmaliza ◽  
Zainal Arifin Ahmad ◽  
J. Banjuraizah

Cordierite was synthesized via glass-route using mineral and pure oxide material. Kaolin, talc, dolomite, magnesia, alumina, silica, and calcium oxide were mixed and melted. CaO from mineral and pure oxide was added in order to investigate the properties of each material in cordierite system. Sample was characterized using X-ray diffraction (XRD) analysis and dilatometer testing. The result showed that when 5wt% CaO from mineral (C5 Min) was added and sintered at 900°C, α-cordierite exist as major phase and anorthite as a minor phase. While for a sample consists of 5wt% CaO from pure oxide (C5 Ox), α-cordierite was present as major phases, µ-cordierite and anorthite as minor phases. Crystallite sizes of each material were in nanorange and crystallite size of C5 Ox was less than C5 Min.


2013 ◽  
Vol 664 ◽  
pp. 620-624
Author(s):  
Amnouy Larpkasemsuk ◽  
Saowaroj Chuayjuljit ◽  
Dujreutai Pongkao Kashima

Pottery stone (PTS) microcrystalline powders were synthesized by a hydrothermal method using two concentrations of NaOH solution (2 M and 4 M) at 60, 80 and 120°C for 8 h in a Teflon- lined stainless steel autoclave. The phase composition and morphology of the samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The major phase compositions of the as-prepared PTS powders appeared in the XRD patterns are all silicate compounds such as tridymite, crystobalite, quartz, feldspar, albite, sodium silicate, analcime, hydroxyl-cancrinite and sodium aluminium silicates, depending on the NaOH concentration and the reaction temperature. Moreover, SEM micrographs showed the spherical polyhedral particles ranging from 8 to 14 µm in diameters and needle-like particles with a mean aspect ratio of 5.7 that obtained by the hydrothermal treatment operated at 120°C using 2 M and 4 M of NaOH, respectively.


2010 ◽  
Vol 152-153 ◽  
pp. 1248-1252
Author(s):  
Qing Chang ◽  
Hong Qiang Ru ◽  
Liang Yu ◽  
Ji Guang Li

In this study, nano-hydroxyapatite (HA) powders were synthesized via a simple sol-gel method using Ca(NO3)2•4H2O and P2O5 as starting materials. Two different precursors, with and without citric acid (CA), were prepared. The transformation process of HA from precursors, purity and particle size of the obtained HA powders were evaluated. HA derived from the precursor with CA showed a different transformation process from that without CA. It was observed that the content of CaO as an unavoidable major impurity was reduced due to the addition of CA. In the calcined powders from the CA-free precursor, X-ray diffraction (XRD) patterns revealed an intense CaO peak. For the calcined powders from the CA-addition precursor, XRD analysis showed a very weak CaO peak. It was also found that the synthesized HA powders from precursor with CA were finer than those without CA. The mechanism of the influence of CA on the formation, purity and particle size distribution of HA powders was discussed.


Sign in / Sign up

Export Citation Format

Share Document