scholarly journals Experimental Investigation of a Single Slope Solar Still Performance- Evaporation Process Enhancement Using Evacuated Pipes

2021 ◽  
Vol 877 (1) ◽  
pp. 012041
Author(s):  
Zahraa Abdulkareem Jaafar ◽  
Hassanain Ghani Hameed

Abstract The single slope solar still productivity strongly depends on the amount of energy absorbed by the solar still basin plate. Therefore, increasing either the basin plate’s absorption or enhancing the heat transfer with raw water will increase the pure water production rates. To improve the evaporation and the solar still thermal performance, custom-designed evacuated copper pipes with different diameters and water filling rates are experimentally investigated in this paper. Moreover, it has been noticed that pure water productivity is significantly affected as it improved by 90.09% when using a 15mm diameter pipe with a 50% filling ratio.

2020 ◽  
Vol 20 (5) ◽  
pp. 1965-1974
Author(s):  
Hery Sonawan ◽  
Halim Abdurrachim

Abstract The flashing process is a way of exposing water in a low-pressure environment by spraying it at high pressure so that the water converts into fine particles. This process is carried out to speed up the evaporation process of water. The evaporation process carried out on freshwater aims to separate the minerals and solids dissolved in water to increase its purity. In this study, the flashing process was carried out through a rotating nozzle that was proven to increase the rate of pure water production. The flashing process experiment is carried out following an experimental design based on the non-dimensional analysis of Buckingham's pi. The rate of pure water production () as the output variable in the flashing process is affected by the nozzle rotational speed (n), nozzle hole diameter (d), feedwater pressure (Pw), vacuum pressure (Pv) and feedwater temperature (T). The feedwater temperature itself can influence the behavior of the feedwater flow in the nozzle, in this case, is density (ρ) and viscosity (μ). Based on these variables, the non-dimensional analysis of Buckingham pi has produced four dimensionless numbers. The generated empirical equations from the flashing process experiments are in the form of quadratic equations. The empirical equation applies to feedwater pressure of 7.6 bar-g, the vacuum pressure of 0.4–0.6 bar-a and nozzle rotational speed of 0–134 rpm. The optimum condensation rate in the flashing experiment was successfully obtained, especially at the nozzle rotation of 27 rpm in all vacuum pressures tested. This success is inseparable from the use of mist-nozzles that convert the feedwater flow into the mist.


Author(s):  
C.K. Sivakumar ◽  
Y. Robinson ◽  
K. Saravanakumar

This paper deals with the effect of thickness of glass material which covered on double slope solar desalination still, performance of the solar still affected by thickness of the glass, which result in to major heat losses in the system. Two inward double slope desalination still with different glass thickness were designed, constructed and experimentally tested their performance. The glasses are inclined 200 from the center of the still. The solar energy collecting area of still is 1m2.The result shows that the variation in glass thickness will affect the efficiency of the still, desalination still with 4mm thickness gives 48% higher fresh water productivity compare to 6mm glass thickness.


Author(s):  
Shunya KATO ◽  
Hiroaki TERASAKI ◽  
Tomohiro UMEMURA ◽  
Rei TAKAHASHI ◽  
Teruyuki FUKUHARA ◽  
...  

2021 ◽  
Vol 877 (1) ◽  
pp. 012038
Author(s):  
Abbas Sahi Shareef ◽  
Hayder Jabbar Kurji ◽  
Hassan Abdulameer Matrood

Abstract Various human activities have led to the consumption of large quantities of pure water, which has led researchers to find efficient and economical methods for desalinating seawater and water containing impurities. In this review paper, solar energy where it is permanent, abundant and environmentally friendly, to produce pure water was discussed using a new solar distillation device, representing the paper’s novelty. The distillation was designed and used in the way led to increase efficiency and improve productivity by adding a solar collector to the system and equipped with a tank containing phase change material (PCM). It has a low melting point and can change the phase by absorbing the system’s latent heat to maintain the system’s temperature. Which contributes to increasing the distillation period even after sunset, thus increasing the daily productivity of freshwater. Using phase change materials will increase distillation hours from (3-4) hours after sunset, increasing the amount of production between (75 - 90) %.


2011 ◽  
Vol 233-235 ◽  
pp. 351-354 ◽  
Author(s):  
Hui Xia Lu ◽  
Jian You Wang ◽  
Shao Feng Bu

Applicable configuration alteration of the electrodeionization (EDI)process commonly for pure water production was carried out to treat dilute nickel wastewater in this paper. The effects of major operating parameters such as applied voltage, dilute and concentrate stream flow rates on the performance of EDI process were investigated systematically. The results showed that, with the feed water containing 50mg·L-1 Ni2+ and pH of 5.7, the dilute resistivity of the EDI could reach higher than 1.0MΩ·cm which gave a Ni2+ rejection more than 99.8% while the Ni2+ was concentrated as high as 1564mg·L-1 in the concentrate stream by optimizing the operating parameters. It was indicated that pure water production and concentrating of heavy metal ions could be simultaneously accomplished via EDI technology just in one process, valuable heavy metal and water resource could be recovered as well.


Membranes ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 78 ◽  
Author(s):  
Remya Nair ◽  
Evgenia Protasova ◽  
Skule Strand ◽  
Torleiv Bilstad

A predictive model correlating the parameters in the mass transfer-based model Spiegler–Kedem to the pure water permeability is presented in this research, which helps to select porous polyamide membranes for enhanced oil recovery (EOR) applications. Using the experimentally obtained values of flux and rejection, the reflection coefficient σ and solute permeability Ps have been estimated as the mass transfer-based model parameters for individual ions in seawater. The reflection coefficient and solute permeability determined were correlated with the pure water permeability of a membrane, which is related to the structural parameters of a membrane. The novelty of this research is the development of a model that consolidates the various complex mechanisms in the mass transfer of ions through the membrane to an empirical correlation for a given feed concentration and membrane type. These correlations were later used to predict ion rejections of any polyamide membrane with a known pure water permeability and flux with seawater as a feed that aids in the selection of suitable nanofiltration (NF) for smart water production.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 973
Author(s):  
Chii-Dong Ho ◽  
Luke Chen ◽  
Jun-Wei Lim ◽  
Po-Hung Lin ◽  
Pin-Tsen Lu

A new design of direct-contact membrane distillation (DCMD) modules with cross-diagonal carbon-fiber spacers of various hydrodynamic angles in flow channels to promote turbulence intensity was proposed to enhance pure water productivity. Attempts to reduce the temperature polarization coefficient were achieved by inserting cross-diagonal carbon-fiber spacers in channels, which create wakes and eddies in both heat and mass transfer behaviors to enhance the permeate flux enhancement. A simplified equation was formulated to obtain the theoretical predictions of heat transfer coefficients in the current DCMD device. The permeate fluxes and temperature distributions of both hot and cold feed streams are represented graphically with the inlet volumetric flow rate and inlet temperature of the hot saline feed stream as parameters. The higher distillate flux of countercurrent-flow operations for saline water desalination was accomplished as compared to the concurrent-flow operations of various hydrodynamic angles. The results show that the agreement between the theoretical predictions and experimental results is reasonably good. The effects of countercurrent-flow operations and inserting carbon fiber spacers have confirmed technical feasibility and device performance enhancement of up to 45%. The influences of operating and design parameters on the pure water productivity with the expense of energy consumption are also discussed.


Sign in / Sign up

Export Citation Format

Share Document