scholarly journals Physicochemical properties of particulate matter (PM2.5) from the steel industry in Indonesia

2022 ◽  
Vol 951 (1) ◽  
pp. 012032
Author(s):  
R Ermawati ◽  
I Setiawati ◽  
Irwinanita ◽  
A Ariani

Abstract Particulate matter (PM) as one of the pollutants in the atmosphere needs to be studied. PM has physical and chemical characteristics and is called physicochemical properties. These properties vary depending on the source of the PM. PM samplers are used for air sampling to characterize some fine particles (PM2.5). The PM2.5 samples have collected from four sampling sites in the steel industry in Cilegon, Indonesia. The sampling sites are the main gate, the hot strip mill, the billet post, and the hot blast plant. The sampling period was four months. The physicochemical properties analysed are morphology, elements content, heavy metals, and particle size. The instruments used to analyse were Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDS), Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), and Particle Size Analyzer (PSA). The morphology of PM2.5 detected varied, but the elements and the most elements found were F and C particles. The metals concentration was below the Indonesia Regulation. While the average particle size analysed was below 2,500 nm. The physicochemical properties of PM2.5 are affected by the type of production process in the industry.

2005 ◽  
Vol 19 (32) ◽  
pp. 4723-4731
Author(s):  
SABINA HUSSAIN ◽  
ORFEO SBAIZERO

The effect of metal particles ( Mo ) inclusion in an insulating matrix ( Al 2 O 3) has been investigated. The conducting phase ( Mo ) is dispersed in alumina in different amounts (00%, 5%, 10%, 20%, 25% in volume). Two types of Mo particles have been used: the first with an average particle size ≅0.56 μm, the other with an average particle size ≅10.0 μm. All specimens were fabricated by hot pressing. The bulk conductivities have been measured over temperatures ranging from 500°C to 900°C using two-probe impedance spectroscopy within the available frequency range (5 Hz–13 MHz). From the interpretation of the impedance spectra, it has been observed that the bulk conductivity for fine particles of Mo inclusion in alumina is higher than that for large particles of Mo inclusion in alumina. A microstructural study revealed that below 15 vol% of Mo inclusion in Al 2 O 3 samples had no-contact random patterns. Samples with metal contents higher than 20 vol% of Mo consistently showed metallic conductivity due to percolation effect.


2004 ◽  
Vol 19 (4) ◽  
pp. 1087-1092 ◽  
Author(s):  
Naofumi Uekawa ◽  
Masayuki Ueta ◽  
Yong Jun Wu ◽  
Kazuyuki Kakegawa

Cerium oxide (CeO2) nanoparticles were obtained by heating a polyethylene glycol (PEG) solution of cerium nitrate hydrate [Ce(NO3)3 6H2O] at 383 K for 3 h. When the PEG, whose molecular weight was 20,000, was used for the preparation, the monodispersed CeO2, whose particle size was about 102 nm, was obtained. When the mixture of PEG20,000 and ethylene glycol (EG) was used to prepare the PEG solution of cerium nitrate hydrate, the average particle size increased from 102 nm to 660 nm with an increase in the EG content of the solution. The pore structure in the obtained CeO2 particles also depended on the weight ratio between EG and PEG20,000.


2012 ◽  
Vol 16 ◽  
pp. 9-14 ◽  
Author(s):  
Sardar Ali ◽  
Noor Asmawati Mohd Zabidi ◽  
Duvvuri Subbarao

Cobalt and iron are common catalysts used in the Fischer-Tropsch (FT) reaction. This paper presents the synthesis and characterization of monometallic and bimetallic cobalt and iron nanoparticles supported on carbon nanotubes (CNTs). The CNTs-supported nanocatalysts were synthesized by a wet impregnation method at various ratios of Fe:Co. The physicochemical properties of the samples were analyzed by H2-temperature programmed reduction (TPR), CO and H2-chemisorption analyses, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The effects of incorporation of Fe into Co on the physicochemical properties of Co/CNTs in terms of degree of reduction, CO and H2 chemisorptions and morphologies were investigated. TEM showed that metal nanoparticles were well dispersed on the external surface and inside the CNTs. For monometallic Co/CNTs and Fe/CNTs, the average metal particle size was 5±1 nm and 6±1 nm, respectively. For the bimetallic 70Co30Fe/CNTs nanocatalysts, the average particle size was found to be 4±1 nm. Metal particles attached to the outer walls were bigger than the ones inside the CNTs. H2-TPR analysis of Co/CNTs indicated two temperature regions at 330°C (low temperature) and 491°C (high temperature). The incorporation of iron into cobalt nanocatalysts of up to 30 % of the total metal loading enhanced the catalyst’s H2 and CO chemisorptions capacities and reducibility.


2020 ◽  
Vol 12 (16) ◽  
pp. 2581
Author(s):  
Yanxia Liu ◽  
Haijun Huang ◽  
Liwen Yan ◽  
Xiguang Yang ◽  
Haibo Bi ◽  
...  

The power law particle size distribution (PSD) slope parameter is commonly used to characterize sediment fluxes, resuspension, aggregates, and settling rates in coastal and estuarine waters. However, particle size distribution metrics are also very useful for understanding sediment source and dynamic processes. In this study, a method was proposed to employ the particle size parameters commonly used in sedimentary geology (average particle size (ø), sorting, skewness, and kurtosis) as indicators of changes in sediment dynamic processes, and MODIS images were used to estimate these parameters. The particle size parameters were estimated using a Mie scattering model, Quasi-Analytical Algorithm (QAA) analysis algorithm, and least squares QR decomposition (LSQR) solution method based on the relationship between the power law distribution of the suspended particles and their optical scattering properties. The estimates were verified by field measurements in the Yellow Sea and Bohai Sea regions of China. This method provided good estimates of the average particle size (ø), sorting, and kurtosis. A greater number of wavebands (39) was associated with more accurate particle size distribution curves. Furthermore, the method was used to monitor changes in suspended particulate matter in the vicinity of the Heini Bay of China before and after the passage of a strong storm in August 2011. The particle size parameters represented the influence of a strong typhoon on the distribution of the near-shore sediment and, together with the PSD slope, comprehensively reflected the changes in the near-shore suspended particulate matter. This method not only established the relationship between remote sensing monitoring and the historical sediment record, it also extends the power law model to the application of sediment source and dynamic processes in coastal waters.


2020 ◽  
Vol 1000 ◽  
pp. 265-271
Author(s):  
Mas Ayu Elita Hafizah ◽  
Ahmad Luthfi Mahar ◽  
Suparno ◽  
Andreas ◽  
Azwar Manaf

The conductive polyaniline (PANi) with fine particles of sizes from 724 nm down to 191 nm has been successfully synthesized through chemical oxidation reaction. The synthesis of PANi was carried out in acidic media under HCl 1.5 M solution using ammonium persulphate (APS) as an oxidizing agent in the presence of anionic surfactants. Two different types of surfactant respectively Sodium Octyl Sulphate (SOS) and Sodium Dodecyl Sulphate (SDS) were brought into an investigation on the effect of the surfactant chain length of C8 and C12 to the particle size formation. Such molecular chain length is responsible for the particle size growth rate. It was found that the average particle size of PANi decreased gradually by the addition of SOS and SDS surfactants with 1 % concentration each. The particle of PANi with sizes 296 nm and 191 nm was obtained as analyzed by Particle Size Analyzer (PSA). These sizes are far below 724 nm, which obtained from the same reaction but with surfactant free. Other supporting indicators showed that the pH of reaction solution was somewhat more acidic after 7 hours of reaction when the surfactant with pH value range within 0.7 – 1.4 presence. The temperature of solution increased with time following the energy released reached 30-31°C within the first 30 minutes, which was lower when compared with that of surfactant free.


2011 ◽  
Vol 34 (1) ◽  
pp. 52-63
Author(s):  
Frederico Sobrinho Silva ◽  
José Augusto Pires Bitencourt ◽  
Fernanda Savergnini ◽  
Leandro Viana Guerra ◽  
José Antônio Baptista-Neto ◽  
...  

Thirty superficial sediment samples were collected in Guanabara Bay in order to identify new trophic state and environmental quality descriptors for coastal systems. A biochemical approach was used for analyzing the quality and quantity of sedimentary organic matter and metabolic bacterial activity. The samples were analyzed for particle size; organic matter, protein, carbohydrate, lipid, biopolymeric carbon, and bioavailable carbon levels; and bacterial metabolic activity. The results show a homogeneous spatial distribution for the anaerobic bacteria web and for biopolymers (carbohydrates>;lipids>;protein). The NE area of the bay displayed sediment lipid levels above 1 mg/g, indicative of organic sewage input. Spatial distribution of the superficial sediments in relation to other variables was not significant (p>;0.05). Biopolymers and labile organic matter showed a significant correlation with the average particle size of 80% of the fine particles. Despite the availability of labile organic matter, under the form of biopolymeric carbon, only 50% of the carbon was available to the trophic web. The bacterial consortia formed by sulfate reducing and denitrifying bacteria sustain the benthic trophic food web in Guanabara Bay.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


2020 ◽  
Vol 17 ◽  
Author(s):  
Mohammad Hossain Shariare ◽  
Tonmoy Kumar Mondal ◽  
Hani Alothaid ◽  
Md. Didaruzzaman Sohel ◽  
MD Wadud ◽  
...  

Aim: EPAS (evaporative precipitation into aqueous solution) was used in the current studies to prepare azithromycin nanosuspensions and investigate the physicochemical characteristics for the nanosuspension batches with the aim of enhancing the dissolution rate of the nanopreparation to improve bioavailability. Methods: EPAS method used in this study for preparing azithromycin nanosuspension was achieved through developing an in-house instrumentation method. Particle size distribution was measured using Zetasizer Nano S without sample dilution. Dissolved azithromycin nanosuspensions were also compared with raw azithromycin powder and commercially available products. Total drug content of nanosuspension batches were measured using an Ultra-Performance Liquid Chromatography (UPLC) system with Photodiode Array (PDA) detector while residual solvent was measured using gas chromatography (GC). Results: The average particle size of azithromycin nanosuspension was 447.2 nm and total drug content was measured to be 97.81% upon recovery. Dissolution study data showed significant increase in dissolution rate for nanosuspension batch when compared to raw azithromycin and commercial version (microsuspension). The residual solvent found for azithromycin nanosuspension is 0.000098023 mg/ mL or 98.023 ppb. Conclusion: EPAS was successfully used to prepare azithromycin nanoparticles that exhibited significantly enhanced dissolution rate. Further studies are required to scale up the process and determine long term stability of the nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2003
Author(s):  
Wei Xu ◽  
Jintao Wei ◽  
Zhengxiong Chen ◽  
Feng Wang ◽  
Jian Zhao

The type and fineness of a filler significantly affect the performance of an asphalt mixture. There is a lack of specific research on the effects of filler fineness and dust from aggregates on the properties of epoxy asphalt (EA) mixtures. The effects of aggregate dust and mineral powder on the properties of an EA mixture were evaluated. These filler were tested to determine their fineness, specific surface area and mineral composition. The effects of these fillers on the EA mastic sample and mixture were evaluated. The morphology of the EA mastic samples was analyzed using scanning electron microscopy (SEM). The effects of the fillers on the Marshall stability, tensile strength and fatigue performance of the EA mixture were evaluated. The dust from the aggregates exhibited an even particle size distribution, and its average particle size was approximately 20% of that of the mineral powder. The SEM microanalysis showed that the EA mastic sample containing relatively fine dust formed a tight and dense interfacial bonding structure with the aggregate. The EA mixture sample containing filler composed of dust from aggregate had a significantly higher strength and longer fatigue life than that of the EA sample containing filler composed of mineral powder.


Sign in / Sign up

Export Citation Format

Share Document