Regulation of mucosal lectins in the oyster Crassostrea virginica in response to food availability and environmental factors

Author(s):  
Simon Allam ◽  
Bassem Allam ◽  
Emmanuelle Pales Espinosa

ABSTRACT Lectins are a large and diverse group of sugar-binding proteins involved in nonself recognition and cell-to-cell interactions. Suspension-feeding bivalves, such as the oyster Crassostrea virginica, are capable of using these molecules to bind cell surface carbohydrates of food particles, allowing particle capture and selection. The aim of this project was to assess whether the expression of mucosal lectins in C. virginica is constant or changes with the season, and to determine whether lectin expression is linked to environmental parameters and/or internal biological factors (gametogenesis). A total of 130 oysters were placed in submerged cages at a tidal estuary and monitored for changes in lectin gene expression over a 1-year period. In parallel, environmental parameters prevailing at the field site, including seawater physicochemical characteristics (temperature, salinity and dissolved oxygen), particulate organic matter and chlorophyll contents, were also monitored. Throughout the study, oysters were dissected and the gills were collected and used for the assessment of the expression of three different lectin genes (CvML, CvML3914 and CvML3912). Remaining tissues were processed for histology and the classification of the gonad development stage. Results showed that when food is abundant, such as during the spring bloom, lectin gene expressions are low, and inversely lectin levels increase with lower food levels. These findings suggest that oysters increase lectin expression to enhance the capture and ingestion of scarce food, while during spring, enough food is already being ingested and lectins are not needed. Furthermore, results showed that as the energy demands of oysters increase (gonad maturation), lectin gene expressions also increase to enhance selective ingestion of nutritious food particles. This study, therefore, demonstrates the seasonality of lectin gene expression in C. virginica, and suggests that lectin regulation is related to the reproduction process and abundance of high-quality food.

2020 ◽  
Vol 23 (04) ◽  
pp. 112-119
Author(s):  
Khalid Jameel Kadhim Al-Zihiry ◽  
Noor Abdulhaleem ◽  
Salman Sahab Atshan ◽  
Amal Jameel Kadhim ◽  
Zaid Osama Ibraheem ◽  
...  
Keyword(s):  

2020 ◽  
Vol 17 (3) ◽  
pp. 191-199
Author(s):  
Seval Yilmaz ◽  
Fatih Mehmet Kandemir ◽  
Emre Kaya ◽  
Mustafa Ozkaraca

Objective: This study aimed to detect hepatic oxidative damage caused by aflatoxin B1 (AFB1), as well as to examine how propolis protects against hepatotoxic effects of AFB1. Method: Rats were split into four groups as control group, AFB1 group, propolis group, AFB1+ propolis group. Results: There was significant increase in malondialdehyde (MDA) level and tumor suppressor protein (TP53) gene expression, Glutathione (GSH) level, Catalase (CAT) activity, CAT gene expression decreased in AFB1 group in blood. MDA level and Glutathione-S-Transferase (GST) activity, GST and TP53 gene expressions increased in AFB1 group, whereas GSH level and CAT activity alongside CAT gene expression decreased in liver. AFB1+propolis group showed significant decrease in MDA level, GST activity, TP53 and GST gene expressions, GSH level and CAT activity and CAT gene expression increased in liver compared to AFB1 group. Conclusion: These results suggest that propolis may potentially be natural agent that prevents AFB1- induced oxidative stress and hepatotoxicity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ewe Seng Ch’ng

AbstractDistinguishing bladder urothelial carcinomas from prostate adenocarcinomas for poorly differentiated carcinomas derived from the bladder neck entails the use of a panel of lineage markers to help make this distinction. Publicly available The Cancer Genome Atlas (TCGA) gene expression data provides an avenue to examine utilities of these markers. This study aimed to verify expressions of urothelial and prostate lineage markers in the respective carcinomas and to seek the relative importance of these markers in making this distinction. Gene expressions of these markers were downloaded from TCGA Pan-Cancer database for bladder and prostate carcinomas. Differential gene expressions of these markers were analyzed. Standard linear discriminant analyses were applied to establish the relative importance of these markers in lineage determination and to construct the model best in making the distinction. This study shows that all urothelial lineage genes except for the gene for uroplakin III were significantly expressed in bladder urothelial carcinomas (p < 0.001). In descending order of importance to distinguish from prostate adenocarcinomas, genes for uroplakin II, S100P, GATA3 and thrombomodulin had high discriminant loadings (> 0.3). All prostate lineage genes were significantly expressed in prostate adenocarcinomas(p < 0.001). In descending order of importance to distinguish from bladder urothelial carcinomas, genes for NKX3.1, prostate specific antigen (PSA), prostate-specific acid phosphatase, prostein, and prostate-specific membrane antigen had high discriminant loadings (> 0.3). Combination of gene expressions for uroplakin II, S100P, NKX3.1 and PSA approached 100% accuracy in tumor classification both in the training and validation sets. Mining gene expression data, a combination of four lineage markers helps distinguish between bladder urothelial carcinomas and prostate adenocarcinomas.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 656
Author(s):  
Giulia Foggi ◽  
Francesca Ciucci ◽  
Maria Conte ◽  
Laura Casarosa ◽  
Andrea Serra ◽  
...  

This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Fatemeh Khodabandehloo ◽  
Sara Taleahmad ◽  
Reza Aflatoonian ◽  
Farzad Rajaei ◽  
Zahra Zandieh ◽  
...  

Abstract Background Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. Results Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. Conclusions These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.


2011 ◽  
Vol 107 (8) ◽  
pp. 1112-1118 ◽  
Author(s):  
Pei-Hsuan Tsai ◽  
Jun-Jen Liu ◽  
Chui-Li Yeh ◽  
Wan-Chun Chiu ◽  
Sung-Ling Yeh

There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25 % of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Li Teng ◽  
Laiwan Chan

SummaryTraditional analysis of gene expression profiles use clustering to find groups of coexpressed genes which have similar expression patterns. However clustering is time consuming and could be diffcult for very large scale dataset. We proposed the idea of Discovering Distinct Patterns (DDP) in gene expression profiles. Since patterns showing by the gene expressions reveal their regulate mechanisms. It is significant to find all different patterns existing in the dataset when there is little prior knowledge. It is also a helpful start before taking on further analysis. We propose an algorithm for DDP by iteratively picking out pairs of gene expression patterns which have the largest dissimilarities. This method can also be used as preprocessing to initialize centers for clustering methods, like K-means. Experiments on both synthetic dataset and real gene expression datasets show our method is very effective in finding distinct patterns which have gene functional significance and is also effcient.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
Mohamed A Gaballa

Cardiac progenitor cells are generated from atria explants; however the cellular origin and the mechanisms of cell outgrowth are unclear. Using transgenic tamoxifen-induced Willms tumor 1 (Wt1)-Cre/ERT and Cre-activated GFP reporter mice, we found approximately 40% of explant-derived cells and 74% of explant-derived c-Kit+ cells originated from the epicardium. In atria from sham hearts, Wt1+ cells were located in a thin epicardial layer, while c-Kit+ cells were primarily found within both the sub-epicardium and the myocardium, albeit at low frequency. No overlap between c-Kit+ and Wt1+ cells was observed, suggesting that epicardial Wt1+ cells do not express c-Kit marker in vivo, but more likely the c-Kit marker was acquired in culture. Compared with 4 days in culture, at day 21 we observed 7 folds increase in Snail gene expression; 32% increase in α-smooth muscle actin (SMA) marker, and 30% decrease in E-cadherin marker, suggesting that the explant-derived cells underwent epithelial to mesenchymal transition (EMT) in vitro. Cell outgrowths released TGF-β (1036.4 ± 1.18 pm/ml) and exhibited active TGF-β signaling, which might triggered the EMT. Compared to shams, CHF cell outgrowths exhibited elevated levels of EMT markers, SMA (49% vs. 34%) and Snail (2 folds), and reduced level of Wt1 (11% vs. 22%). In addition, CHF cell outgrowths had two folds increase in Pai1 gene expression, a direct target of TGF-β signaling. In c-Kit+ cells derived from CHF explants, Nanog gene expression was 4 folds lower and Sox 2 was 2 folds lower compared with cells from shams. Suppression of EMT in cell outgrowth increased the percentage of c-Kit+ and Wt1+ cells by 17%, and 15%, respectively. Also suppression of EMT in c-Kit+ cells resulted in 4 folds increase in Nanog and 3 fold increase in Sox2 gene expressions. Our results showed that CHF may further exuberates EMT while diminishes the re-activation of pluripotency genes. Thus, EMT modulation in CHF is a possible strategy to regulate both the yield and the pluripotency of cardiac-explant-derived progenitor cells.


2021 ◽  
pp. bjophthalmol-2020-318330
Author(s):  
Rohan Verma ◽  
Dongseok Choi ◽  
Allison J Chen ◽  
Christina A Harrington ◽  
David J Wilson ◽  
...  

BackgroundOrbital inflammatory disease (OID) encompasses a wide range of pathology including thyroid-associated orbitopathy (TAO), granulomatosis with polyangiitis (GPA), sarcoidosis and non-specific orbital inflammation (NSOI), accounting for up to 6% of orbital diseases. Understanding the underlying pathophysiology of OID can improve diagnosis and help target therapy.AimsTo test the hypothesis that shared signalling pathways are activated in different forms of OID.MethodsIn this secondary analysis, pathway analysis was performed on the previously reported differentially expressed genes from orbital adipose tissue using patients with OID and healthy controls who were characterised by microarray. For the original publications, tissue specimens were collected from oculoplastic surgeons at 10 international centres representing four countries (USA, Canada, Australia and Saudi Arabia). Diagnoses were independently confirmed by two masked ocular pathologists (DJW, HEG). Gene expression profiling analysis was performed at the Oregon Health & Science University. Eighty-three participants were included: 25 with TAO, 6 with orbital GPA, 7 with orbital sarcoidosis, 25 with NSOI and 20 healthy controls.ResultsAmong the 83 subjects (mean (SD) age, 52.8 (18.3) years; 70% (n=58) female), those with OID demonstrated perturbation of the downstream gene expressions of the IGF-1R (MAPK/RAS/RAF/MEK/ERK and PI3K/Akt/mTOR pathways), peroxisome proliferator-activated receptor-γ (PPARγ), adipocytokine and AMPK signalling pathways compared with healthy controls. Specifically, GPA samples differed from controls in gene expression within the insulin-like growth factor-1 receptor (IGF-1R, PI3K-Akt (p=0.001), RAS (p=0.005)), PPARγ (p=0.002), adipocytokine (p=0.004) or AMPK (p=<0.001) pathways. TAO, sarcoidosis and NSOI samples were also found to have statistically significant differential gene expression in these pathways.ConclusionsAlthough OID includes a heterogenous group of pathologies, TAO, GPA, sarcoidosis and NSOI share enrichment of common gene signalling pathways, namely IGF-1R, PPARγ, adipocytokine and AMPK. Pathway analyses of gene expression suggest that other forms of orbital inflammation in addition to TAO may benefit from blockade of IGF-1R signalling pathways.


2002 ◽  
Vol 283 (1) ◽  
pp. G133-G138 ◽  
Author(s):  
Archana Gangopadhyay ◽  
Manikkavasagar Thamotharan ◽  
Siamak A. Adibi

The knowledge of expression and biology of the intestinal oligopeptide transporter (Pept-1) in a metabolic disorder such as diabetes may have nutritional and pharmacological implications. To study this problem, rats were made diabetic by streptozotocin injection, and Western and Northern blot analyses and nuclear run-on assay were used to determine the protein and gene expressions of Pept-1 and its rate of transcription, respectively. Uncontrolled diabetes for 96 h increased the activity of Pept-1 in the brush-border membrane of intestinal mucosa. Studies of Michaelis-Menten constant, maximal velocity, and protein expression of Pept-1 indicated that an increase in the abundance of this transporter was responsible for the increased activity. Studies of the gene expression showed that uncontrolled diabetes increased the abundance of mRNA encoding Pept-1 without altering its rate of transcription. Lastly, studies of the specificity of the above effect showed that uncontrolled diabetes similarly affected the protein and gene expressions of Pept-1 located in the kidney. In conclusion, the data show that 1) uncontrolled diabetes has a tropic effect on Pept-1 and 2) the effect is systemic, and its molecular mechanism appears to be an increase in the stabilization of mRNA encoding Pept-1.


Sign in / Sign up

Export Citation Format

Share Document