A discussion on deformation of solids by the impact of liquids, and its relation to rain damage in aircraft and missiles, to blade erosion in steam turbines, and to cavitation erosion - The application of dislocation etching techniques to the study of liquid impacts

Erosion damage is very often the cumulative result of a series of liquid droplet impacts which individually do not produce any deformation visible under the optical microscope. Such collisions do, however, produce dislocations in the crystalline structure surrounding the area of impact, and in suitable materials these dislocations can be revealed by chemical etch pitting. The technique is particularly easy to apply to freshly cleaved lithium fluoride crystals, and it has been used to study several types of impact. The impact of solid balls produces symmetrical rosettes of dislocations lying on {110} planes, and the dimensions of the rosettes can be related to the area of contact and stress distribution calculated from the theory of the collision of elastic/plastic bodies. Similar, but less symmetrical, rosettes are produced by liquid impacts and, by comparison of the extent and distribution of the dislocation loops in the two cases, it has been possible to make an estimate of the pressure and effective area of contact for liquid drops of various sizes, quantities which are otherwise difficult to measure. The behaviour of liquids other than water has also been investigated.

An investigation of the erosion of solids by repeated liquid impact at relatively low velocities has been carried out. The work has shown that even at low velocities compressible behaviour of the liquid is important in determining the impact pressure. An attempt has also been made to determine the distribution of the impact load. The mechanism of erosion in brittle polymers and in ductile metals has been studied. The effect of altering the conditions of impact on the erosion behaviour is described.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 607
Author(s):  
Yuxi Zhao ◽  
Rongcheng Liu ◽  
Fan Yan ◽  
Dawei Zhang ◽  
Junjin Liu

The windblown sand-induced degradation of glass panels influences the serviceability and safety of these panels. In this study, the degradation of glass panels subject to windblown sand with different impact velocities and impact angles was studied based on a sandblasting test simulating a sandstorm. After the glass panels were degraded by windblown sand, the surface morphology of the damaged glass panels was observed using scanning electron microscopy, and three damage modes were found: a cutting mode, smash mode, and plastic deformation mode. The mass loss, visible light transmittance, and effective area ratio values of the glass samples were then measured to evaluate the effects of the windblown sand on the panels. The results indicate that, at high abrasive feed rates, the relative mass loss of the glass samples decreases initially and then remains steady with increases in impact time, whereas it increases first and then decreases with an increase in impact angle such as that for ductile materials. Both visible light transmittance and effective area ratio decrease with increases in the impact time and velocities. There exists a positive linear relationship between the visible light transmittance and effective area ratio.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qingzhe Liu ◽  
Jack Hau Yung Lo ◽  
Ye Li ◽  
Yuan Liu ◽  
Jinyu Zhao ◽  
...  

AbstractThe impact and splash of liquid drops on solid substrates are ubiquitous in many important fields. However, previous studies have mainly focused on spherical drops while the non-spherical situations, such as raindrops, charged drops, oscillating drops, and drops affected by electromagnetic field, remain largely unexplored. Using ferrofluid, we realize various drop shapes and illustrate the fundamental role of shape in impact and splash. Experiments show that different drop shapes produce large variations in spreading dynamics, splash onset, and splash amount. However, underlying all these variations we discover universal mechanisms across various drop shapes: the impact dynamics is governed by the superellipse model, the splash onset is triggered by the Kelvin-Helmholtz instability, and the amount of splash is determined by the energy dissipation before liquid taking off. Our study generalizes the drop impact research beyond the spherical geometry, and reveals the potential of using drop shape to control impact and splash.


Author(s):  
Christian Kontermann ◽  
Henning Almstedt ◽  
Falk Müller ◽  
Matthias Oechsner

Changes within the global energy market and a demand for a more flexible operation of gas- and steam-turbines leads to higher utilization of main components and raises the question how to deal with this challenge. One strategy to encounter this is to increase the accuracy of the lifetime assessment by quantifying and reducing conservatisms. At first the impact of considering a fracture mechanical notch support under creep-fatigue loading is studied by discussing the results of an extensive experimental program performed on notched round-bars under global strain control. A proposal how to consider this fracture mechanical notch support within a lifetime assessment is part of the discussion of the second part. Here, a theoretical FEM-based concept is introduced and validated by comparing the theoretical prediction with the results of the previously mentioned experimental study. Finally, the applicability of the developed and validated FEM-based procedure is demonstrated.


Author(s):  
Eduardo Castillo-Orozco ◽  
Ashkan Davanlou ◽  
Pretam K. Choudhury ◽  
Ranganathan Kumar

The release of liquid hydrocarbons into the water is one of the environmental issues that have attracted more attention after deepwater horizon oil spill in Gulf of Mexico. The understanding of the interaction between liquid droplets impacting on an immiscible fluid is important for cleaning up oil spills as well as the demulsification process. Here we study the impact of low-viscosity liquid drops on high-viscosity liquid pools, e.g. water and ethanol droplets on a silicone oil 10cSt bath. We use an ultrafast camera and image processing to provide a detailed description of the impact phenomenon. Our observations suggest that viscosity and density ratio of the two media play a major role in the post-impact behavior. When the droplet density is larger than that of the pool, additional cavity is generated inside the pool. However, if the density of the droplet is lower than the pool, droplet momentary penetration may be facilitated by high impact velocities. In crown splash regime, the pool properties as well as drop properties play an important role. In addition, the appearance of the central jet is highly affected by the properties of the impacting droplet. In general, the size of generated daughter droplets as well as the thickness of the jet is reduced compared to the impact of droplets with the pool of an identical fluid.


Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This work aims at investigating the impact of partial admission on a steam turbine stage, focusing on the aerodynamic performance and the mechanical behavior. The partialized stage of a small steam turbine was chosen as test case. A block of nozzles was glued in a single “thick nozzle” in order to mimic the effect of a partial admission arc. Numerical analyses in full and in partial admission cases were carried out by means of three-dimensional, viscous, unsteady simulations. Several cases were tested by varying the admission rate, that is the length of the partial arc, and the number of active sectors of the wheel. The goal was to study the effect of partial admission conditions on the stage operation, and, in particular on the shape of stage performance curves as well as on the forces acting on bucket row. First of all, a comparison between the flow field of the full and the partial admission case is presented, in order to point out the main aspects related to the presence of a partial arc. Then, from an aerodynamic point of view, a detailed discussion of the modifications of unsteady rows interaction (potential, shock/wake), and how these ones propagate downstream, is provided. The attention is focused on the phenomena experienced in the filling/emptying region, which represent an important source of aerodynamic losses. The results try to deepen the understanding in the loss mechanisms involved in this type of stage. Finally, some mechanical aspects are addressed, and the effects on bucket loading and on aeromechanical forcing are investigated.


2021 ◽  
Author(s):  
Gabriele Girezzi ◽  
Damaso Checcacci ◽  
Lorenzo Cosi ◽  
Andrea Maggi ◽  
Alessandro Sani ◽  
...  

Abstract The fouling phenomenon addressed in this paper is related to the deposition within steam turbines of steam impurities and to the presence of solid debris, coming from upstream plant sections, that can create solid build-ups in stationary and moving parts inside the turbine. As a consequence, fouling causes unit efficiency decline but, in severe cases, it may also lead to sticking of moving components, such as valves, that may be critical in machine control and/or safety. Despite well-studied and well-considered in design and operation of large power utility plants, where steam quality is of primary importance for boilers, super-heaters, turbines and condensers, this subject is often overlooked in small power generation or industrial applications, where efficiency may be less critical but turbine availability is of paramount importance for plant operation (e.g. LNG plants). The steam fouling is a subject that, despite widely studied in the past, has been quite neglected in more recent years. This paper, with the aim of underlining the importance of fouling in the operation of turbines for industrial applications, starts with examples of field evidences of severe fouling. Then the design of a test bench for the experimental characterization of fouling rates and validation of turbine components, exposed to fouling conditions, is presented along with the description of the deposition models that were developed on the basis of the physical phenomena involved in the fouling process. This study addresses the main deposition physical principles and their implications in the thermodynamic design of the test bench, on the basis of the specific physical properties of the impurities of interest. To better match plant real cases, the contaminants tested included those which have been usually identified within the units during maintenance activities and for which specific limits are prescribed by OEMs. In the following section, details relevant to the main deposition mechanisms due to different geometries and flow-fields are discussed. The results obtained are qualitatively in line with literature and internal practices, yet, through the test activities, it has been possible to establish a quantitative relationship between the concentrations of each contaminant at inlet section and the different thermodynamic conditions along the test bench, so capturing the impact of solubility changes along with the steam expansion.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2020 ◽  
Vol 867 ◽  
pp. 117-124
Author(s):  
Herry Oktadinata ◽  
Winarto Winarto ◽  
Dedi Priadi ◽  
Eddy S. Siradj ◽  
Ario S. Baskoro

The study was conducted to evaluate the impact toughness of flux-cored arc welded of SM570-TMC steel joint under different heat inputs, 0.9 kJ/mm (low heat input) and 1.6 kJ/mm (high heat input). Welding wire containing 0.4%Ni was selected on this experiment. Multi-pass welds were performed on SM570-TMC steel plate of 16 mm in thickness with a single V-groove butt joint on flat position (1G). The evaluation consists of observations on microstructure using an optical microscope and SEM-EDS, and mechanical properties including tensile, microhardness Vickers and Charpy V-notch (CVN) impact test at temperatures of 25, 0 and-20 °C. Results showed that the impact toughness of the base metal (BM) was higher than the weld metal (WM) at all test temperatures. Hardness and impact toughness of WM at low heat input was observed higher than when applied a high heat input. The welded samples at low and high heat inputs had high of tensile strength, and the fracture seemly occurs on the BM. Microstructure observation showed that at a high heat input, larger grains and microsegregation were observed. It might affect on decreasing their impact property.


2018 ◽  
Vol 5 (12) ◽  
pp. 181101 ◽  
Author(s):  
Y. Tatekura ◽  
M. Watanabe ◽  
K. Kobayashi ◽  
T. Sanada

The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55 (5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory.


Sign in / Sign up

Export Citation Format

Share Document