scholarly journals The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment

Microbiology ◽  
2006 ◽  
Vol 152 (11) ◽  
pp. 3175-3183 ◽  
Author(s):  
Jos Boekhorst ◽  
Michiel Wels ◽  
Michiel Kleerebezem ◽  
Roland J. Siezen

The predicted extracellular proteins of the bacterium Lactobacillus plantarum were analysed to gain insight into the mechanisms underlying interactions of this bacterium with its environment. Extracellular proteins play important roles in processes ranging from probiotic effects in the gastrointestinal tract to degradation of complex extracellular carbon sources such as those found in plant materials, and they have a primary role in the adaptation of a bacterium to changing environmental conditions. The functional annotation of extracellular proteins was improved using a wide variety of bioinformatics methods, including domain analysis and phylogenetic profiling. At least 12 proteins are predicted to be directly involved in adherence to host components such as collagen and mucin, and about 30 extracellular enzymes, mainly hydrolases and transglycosylases, might play a role in the degradation of substrates by L. plantarum to sustain its growth in different environmental niches. A comprehensive overview of all predicted extracellular proteins, their domains composition and their predicted function is provided through a database at http://www.cmbi.ru.nl/secretome, which could serve as a basis for targeted experimental studies into the function of extracellular proteins.

Author(s):  
Do Thi Binh Xuan Loc ◽  
Tran Van Tuan

Aspergillus niger is a mold commonly used in industrial production of many enzymes and organic acids. Because this fungus can produce different extracellular enzymes to degrade plant materials, it also causes the damages for some agricultural products at postharvest stages. In this study, we isolated a black mold strain named TL8 from a decayed dragon fruit. Based on morphological characteristics and the rDNA ITS (internal transcribed spacer) sequence, the TL8 strain was identified as A. niger. The A. niger TL8 strain is able to use different carbon sources for the growth and decay the peel of dragon fruits in vitro. In order to establish the basis for future studies on the mechanism of plant material decomposition of the fungus, we have successfully transferred and expressed the GFP reporter gene in this A. niger strain using the Agrobacterium tumefaciens-mediated transformation method and the hygromycin resistance marker.


2003 ◽  
Vol 86 (1-2) ◽  
pp. 139-156 ◽  
Author(s):  
Robin J. Rowbury

Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 531a-531 ◽  
Author(s):  
Robin G. Brumfield ◽  
Burhan Ozkan ◽  
Osman Karagüzel

Thirty cut flower businesses were surveyed in 1997 to examine the production structure and main problems of export-oriented contract growing in Turkey. The survey was conducted in Antalya province, which is the center of export-oriented cut flower production in Turkey. The results of the research provided insight into how Turkish cut flower-contracted growers were managing some of the key areas of their operations. The study also provided the opportunity for growers to highlight their concerns about contract growing for export-oriented cut flower production. The survey showed that contract growers do not use specific performance indicators relevant to cut flower production. The product price received by the contract growers was determined by the export companies. These export companies receive flowers from growers mainly on consignment. After exporting the products, exporters periodically pay the grower, subtracting a commission for their services and other marketing expenses. Contract growers are essentially price takers in the transactions. The business procedure from production to price setting and marketing was not in the hands of the contract growers. Therefore, the trading risks are essentially borne by the contract growers. The main concerns raised by contract growers were the current consignment system, cost of the plant materials, and the late payment for the sold products.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 246
Author(s):  
Xiaomeng Chen ◽  
Rui Li ◽  
Yonglin Wang ◽  
Aining Li

An emerging poplar canker caused by the gram-negative bacterium, Lonsdalea populi, has led to high mortality of hybrid poplars Populus × euramericana in China and Europe. The molecular bases of pathogenicity and bark adaptation of L. populi have become a focus of recent research. This study revealed the whole genome sequence and identified putative virulence factors of L. populi. A high-quality L. populi genome sequence was assembled de novo, with a genome size of 3,859,707 bp, containing approximately 3434 genes and 107 RNAs (75 tRNA, 22 rRNA, and 10 ncRNA). The L. populi genome contained 380 virulence-associated genes, mainly encoding for adhesion, extracellular enzymes, secretory systems, and two-component transduction systems. The genome had 110 carbohydrate-active enzyme (CAZy)-coding genes and putative secreted proteins. The antibiotic-resistance database annotation listed that L. populi was resistant to penicillin, fluoroquinolone, and kasugamycin. Analysis of comparative genomics found that L. populi exhibited the highest homology with the L. britannica genome and L. populi encompassed 1905 specific genes, 1769 dispensable genes, and 1381 conserved genes, suggesting high evolutionary diversity and genomic plasticity. Moreover, the pan genome analysis revealed that the N-5-1 genome is an open genome. These findings provide important resources for understanding the molecular basis of the pathogenicity and biology of L. populi and the poplar-bacterium interaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paola Riente ◽  
Mauro Fianchini ◽  
Patricia Llanes ◽  
Miquel A. Pericàs ◽  
Timothy Noël

AbstractThe importance of discovering the true catalytically active species involved in photocatalytic systems allows for a better and more general understanding of photocatalytic processes, which eventually may help to improve their efficiency. Bi2O3 has been used as a heterogeneous photocatalyst and is able to catalyze several synthetically important visible-light-driven organic transformations. However, insight into the operative catalyst involved in the photocatalytic process is hitherto missing. Herein, we show through a combination of theoretical and experimental studies that the perceived heterogeneous photocatalysis with Bi2O3 in the presence of alkyl bromides involves a homogeneous BinBrm species, which is the true photocatalyst operative in the reaction. Hence, Bi2O3 can be regarded as a precatalyst which is slowly converted in an active homogeneous photocatalyst. This work can also be of importance to mechanistic studies involving other semiconductor-based photocatalytic processes.


2020 ◽  
Vol 11 (8) ◽  
pp. 753-766
Author(s):  
A.I. Zaydi ◽  
L.-C. Lew ◽  
Y.-Y. Hor ◽  
M.H. Jaafar ◽  
L.-O. Chuah ◽  
...  

Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.


2021 ◽  
Vol 11 (13) ◽  
pp. 5851
Author(s):  
Buket Şengül ◽  
Hamid Mostofi

When considering the sharp growth rate of the use of e-micromobility vehicles, such as e-scooters and e-bikes, it is necessary to investigate whether these emerging modes of transport play a sustainable role in cities in terms of their energy efficiency, emissions, and their relationship with other modes of mobility, such as public transport. This paper aims to provide a comprehensive overview of the impacts of e-micromobility through a systematic review of relevant studies in the field of e-scooters and e-bikes. We followed the steps of PRISMA to conduct a systematic literature review, including identification, screening, eligibility and inclusion steps. One hundred forty-six studies were reviewed and compiled, and 29 of these studies were selected for the focus of this review and their research data were synthesized. The impacts of e-micromobilities were categorized into four categories—travel behaviors, energy consumption, environmental impacts, and safety and related regulations. The category of travel behaviors includes the analysis of the purposes of travel, modal shift from different modes of transport to e-micromobility vehicles, average travel time, and distance. In this review, the findings of relevant studies in different cities around world are compared to each other and synthesized to give an insight into the role of e-micromobility in the present and in the future of urban transportation.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 967
Author(s):  
Micaely Cristina dos Santos Tenório ◽  
Nayara Gomes Graciliano ◽  
Fabiana Andréa Moura ◽  
Alane Cabral Menezes de Oliveira ◽  
Marília Oliveira Fonseca Goulart

N-acetylcysteine (NAC) is a medicine widely used to treat paracetamol overdose and as a mucolytic compound. It has a well-established safety profile, and its toxicity is uncommon and dependent on the route of administration and high dosages. Its remarkable antioxidant and anti-inflammatory capacity is the biochemical basis used to treat several diseases related to oxidative stress and inflammation. The primary role of NAC as an antioxidant stems from its ability to increase the intracellular concentration of glutathione (GSH), which is the most crucial biothiol responsible for cellular redox imbalance. As an anti-inflammatory compound, NAC can reduce levels of tumor necrosis factor-alpha (TNF-α) and interleukins (IL-6 and IL-1β) by suppressing the activity of nuclear factor kappa B (NF-κB). Despite NAC’s relevant therapeutic potential, in several experimental studies, its effectiveness in clinical trials, addressing different pathological conditions, is still limited. Thus, the purpose of this chapter is to provide an overview of the medicinal effects and applications of NAC to human health based on current therapeutic evidence.


1992 ◽  
Vol 295 ◽  
Author(s):  
P. Molinàs-Mata ◽  
J. Zegenhagen ◽  
M. Böhringer ◽  
N. Takeuchi ◽  
A. Selloni

AbstractWe report on new experimental studies of the Ge(111)-c(2×8) reconstruction performed with low-energy electron diffraction. (LEED) and scanning tunneling microscopy (STM). Weak quarter-order reflections are present in the c(2 × 8) LEED pattern in agreement with previous observations and results of ab initio calculations. In order to gain insight into the predicted splitting of dangling bond states, we compare constant current topographs (CCT's) performed at high-tunneling currents (40.nA) with first-principles calculations of the local density of states (LDOS) 1Å above the surface adatoms and obtain good qualitative agreement. We finally discuss to what extent the STM CCT's at high tunneling currents (small sample-tip distances (STD)) are sensitive to surface states outside the Г point.


2021 ◽  
Vol 38 (1) ◽  
pp. 101-139
Author(s):  
Abigail C. Cohn ◽  
Margaret E. L. Renwick

Abstract We pursue the idea, implicit in much current phonological research, that understanding the multiple factors that shape speech production and perception is within the purview of phonology. In particular, increased access to naturalistic data has highlighted the multidimensional reality of variation in spoken language. At the same time, longstanding methods of doing phonology – including impressionistic analysis, and laboratory and experimental studies – remain crucial to understanding native speaker competence and grammar. We advocate for an expanded methodological toolbox in phonological analysis, using an iterative approach that crucially includes naturalistic corpus data. Integrating across multiple data sources offers fuller insight into the nature of the phonological system and native speaker-hearer ability. Several case studies highlight findings gained through linked, iterative studies, showing the importance of naturalistic data for a richer understanding of phonological phenomena, and leading us to reflect on desiderata for corpora to reveal speaker-specific patterns in fine phonetic detail and variability, which we argue are part of a speaker-hearer’s phonological competence. Phonological analysis that embraces the full spectrum of variation in spoken language data (from categorical to gradient, and systematic to sporadic) contributes to a deeper understanding of phonology in this richer sense.


Sign in / Sign up

Export Citation Format

Share Document