scholarly journals ER stress-mediated BK dysfunction in the DRG underlies pain in a model of multiple sclerosis

2020 ◽  
Author(s):  
Muhammad Saad Yousuf ◽  
Samira Samtleben ◽  
Shawn M. Lamothe ◽  
Timothy Friedman ◽  
Ana Catuneanu ◽  
...  

ABSTRACTNeuropathic pain is a common symptom of multiple sclerosis (MS) and current treatment options are ineffective. In this study, we investigated whether endoplasmic reticulum (ER) stress in dorsal root ganglia (DRG) contributes to pain hypersensitivity in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Inflammatory cells and increased levels of ER stress markers are evident in post-mortem DRGs from MS patients. Similarly, we observed ER stress in the DRG of mice with EAE and relieving ER stress with a chemical chaperone, 4-phenylbutyric acid (4-PBA), reduced pain hypersensitivity. In vitro, 4-PBA and the selective PERK inhibitor, AMG44, normalize cytosolic Ca2+ transients in putative DRG nociceptors. We went to assess disease-mediated changes in the functional properties of Ca2+-sensitive BK-type K+ channels in DRG neurons. We found that the conductance-voltage (GV) relationship of BK channels was shifted to a more positive voltage, together with a more depolarized resting membrane potential in EAE cells. Our results suggest that ER stress in sensory neurons of MS patients and mice with EAE is a source of pain and that ER stress modulators can effectively counteract this phenotype.

2016 ◽  
Vol 113 (15) ◽  
pp. 3960-3965 ◽  
Author(s):  
Kathrin Thell ◽  
Roland Hellinger ◽  
Emine Sahin ◽  
Paul Michenthaler ◽  
Markus Gold-Binder ◽  
...  

Multiple sclerosis (MS) is the most common autoimmune disease affecting the central nervous system. It is characterized by auto-reactive T cells that induce demyelination and neuronal degradation. Treatment options are still limited and several MS medications need to be administered by parenteral application but are modestly effective. Oral active drugs such as fingolimod have been weighed down by safety concerns. Consequently, there is a demand for novel, especially orally active therapeutics. Nature offers an abundance of compounds for drug discovery. Recently, the circular plant peptide kalata B1 was shown to silence T-cell proliferation in vitro in an IL-2–dependent mechanism. Owing to this promising effect, we aimed to determine in vivo activity of the cyclotide [T20K]kalata B1 using the MS mouse model experimental autoimmune encephalomyelitis (EAE). Treatment of mice with the cyclotide resulted in a significant delay and diminished symptoms of EAE by oral administration. Cyclotide application substantially impeded disease progression and did not exhibit adverse effects. Inhibition of lymphocyte proliferation and the reduction of proinflammatory cytokines, in particular IL-2, distinguish the cyclotide from other marketed drugs. Considering their stable structural topology and oral activity, cyclotides are candidates as peptide therapeutics for pharmaceutical drug development for treatment of T-cell-mediated disorders.


Author(s):  
Elisa Mariano Pioltine ◽  
Camila Bortoliero Costa ◽  
Laís Barbosa Latorraca ◽  
Fernanda Fagali Franchi ◽  
Priscila Helena dos Santos ◽  
...  

In several species, oocyte and embryo competence are improved by the addition of endoplasmic reticulum (ER) stress inhibitors to in vitro maturation (IVM) medium and/or in vitro culture (IVC) medium. This study aimed to evaluate the effects of three concentrations of tauroursodeoxycholic acid (TUDCA; 50, 200, and 1,000 μM), a chemical chaperone for relieving ER stress, during IVM of bovine cumulus–oocyte complexes (COCs) for 24 h. Treated oocytes were analyzed for nuclear maturation, reactive oxygen species (ROS) production, mitochondrial activity, and abundance of target transcripts. In addition, the number of pronuclei in oocytes was evaluated after 18–20 h of insemination, and the rates of blastocyst and hatched blastocyst formation were evaluated after 7 and 8/9 days of culture, respectively. We further evaluated the transcript abundance of embryonic quality markers. Our findings showed that supplementation of IVM medium with 200 μM of TUDCA decreased ROS production and increased abundance of transcripts related to antioxidant activity in oocytes (CAT, GPX1, and HMOX1) and embryos (GPX1 and PRDX3). Interestingly, high concentration of TUDCA (1,000 μM) was toxic to oocytes, reducing the nuclear maturation rate, decreasing mitochondrial activity, and increasing the abundance of ER stress (HSPA5) and cellular apoptosis (CASP3 and CD40) related transcripts. The results of this study suggest that treatment with 200 μM of TUDCA is associated with a greater resistance to oxidative stress and indirectly with ER stress relief in bovine oocytes.


2021 ◽  
Author(s):  
J. Fransson ◽  
C. Bachelin ◽  
F. Deknuydt ◽  
F. Ichou ◽  
L. Guillot-Noël ◽  
...  

AbstractIn multiple sclerosis (MS), immune cells invade the central nervous system and destroy myelin. Macrophages contribute to demyelination and myelin repair, and their role in each process depends on their ability to acquire specific phenotypes in response to external signals. Here, we assess whether defects in MS patient macrophage responses may lead to increased inflammation or lack of neuro-regenerative effects.To test this hypothesis, CD14+CD16- monocytes from MS patients and healthy controls were activated in vitro to obtain homeostatic-like, pro-inflammatory and pro-regenerative macrophages. Myelin phagocytic capacity and surface molecule expression of CD14, CD16 and HLA-DR were evaluated with flow cytometry. In parallel, macrophages were assessed through RNA sequencing and metabolomics.We observed that MS patient monocytes ex vivo recapitulate their preferential activation toward a CD16+ phenotype, a subset of pro-inflammatory cells present in MS lesions. Even in the absence of pro-inflammatory stimuli, MS patient macrophages exhibit a pro-inflammatory transcriptomic profile with higher levels of cytokine/chemokine suggesting increased recruitment capacities. Interestingly, MS patient macrophages exhibit a specific metabolic signature with a mitochondrial energy metabolism blockage resulting in a shift from oxidative phosphorylation to glycolysis. Furthermore, we observe a failure to up-regulate apoptosis effector genes in the pro inflammatory state suggesting a longer-lived pro-inflammatory macrophage population.Our results highlight an intrinsic defect of MS patient macrophages that provide evidence of innate immune cell memory in MS.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd9443
Author(s):  
Tejabhiram Yadavalli ◽  
Rahul Suryawanshi ◽  
Raghuram Koganti ◽  
James Hopkins ◽  
Joshua Ames ◽  
...  

Herpesviruses are ubiquitous human pathogens that tightly regulate many cellular pathways including the unfolded protein response to endoplasmic reticulum (ER) stress. Pharmacological modulation of this pathway results in the inhibition of viral replication. In this study, we tested 4-phenylbutyrate (PBA), a chemical chaperone–based potent alleviator of ER stress, for its effects on herpes simplex virus (HSV) type 1 infection. Through in vitro studies, we observed that application of PBA to HSV-infected cells results in the down-regulation of a proviral, ER-localized host protein CREB3 and a resultant inhibition of viral protein synthesis. PBA treatment caused viral inhibition in cultured human corneas and human skin grafts as well as murine models of ocular and genital HSV infection. Thus, we propose that this drug can provide an alternative to current antivirals to treat both ocular HSV-1 and genital HSV-2 infections and may be a strong candidate for human trials.


Author(s):  
Lara Bittmann

On December 31, 2019, WHO was informed of cases of pneumonia of unknown cause in Wuhan City, China. A novel coronavirus was identified as the cause by Chinese authorities on January 7, 2020 and was provisionally named "2019-nCoV". This new Coronavirus causes a clinical picture which has received now the name COVID-19. The virus has spread subsequently worldwide and was explained on the 11th of March, 2020 by the World Health Organization to the pandemic.


2019 ◽  
Vol 25 (39) ◽  
pp. 5266-5278 ◽  
Author(s):  
Katia D'Ambrosio ◽  
Claudiu T. Supuran ◽  
Giuseppina De Simone

Protozoans belonging to Plasmodium, Leishmania and Trypanosoma genera provoke widespread parasitic diseases with few treatment options and many of the clinically used drugs experiencing an extensive drug resistance phenomenon. In the last several years, the metalloenzyme Carbonic Anhydrase (CA, EC 4.2.1.1) was cloned and characterized in the genome of these protozoa, with the aim to search for a new drug target for fighting malaria, leishmaniasis and Chagas disease. P. falciparum encodes for a CA (PfCA) belonging to a novel genetic family, the η-CA class, L. donovani chagasi for a β-CA (LdcCA), whereas T. cruzi genome contains an α-CA (TcCA). These three enzymes were characterized in detail and a number of in vitro potent and selective inhibitors belonging to the sulfonamide, thiol, dithiocarbamate and hydroxamate classes were discovered. Some of these inhibitors were also effective in cell cultures and animal models of protozoan infections, making them of considerable interest for the development of new antiprotozoan drugs with a novel mechanism of action.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document