scholarly journals The global burden of plant disease tracks crop yields under climate change

2020 ◽  
Author(s):  
Thomas M. Chaloner ◽  
Sarah J. Gurr ◽  
Daniel P. Bebber

AbstractGlobal food security is strongly determined by crop production. Climate change will not only affect crop yields directly, but also indirectly via the distributions and impacts of plant pathogens that can cause devastating production losses. However, the likely changes in pathogen pressure in relation to global crop production are poorly understood. Here we show that disease risk for 79 fungal and oomycete crop pathogens will closely track projected yield changes in 12 major crops over the 21st Century. For most crops, yields are likely to increase at high latitudes but disease risk will also grow. In addition, the USA, Europe and China will experience major changes in pathogen assemblages. In contrast, while the tropics will see little or no productivity gains, the disease burden is also likely to decline. The benefits of yield gains will therefore be tempered by the increased burden of crop protection.

2021 ◽  
Author(s):  
Sara Minoli ◽  
Jonas Jägermeyr ◽  
Senthold Asseng ◽  
Christoph Müller

<p>Broad evidence is pointing at possible adverse impacts of climate change on crop yields. Due to scarce information about farming management practices, most global-scale studies, however, do not consider adaptation strategies.</p><p>Here we integrate models of farmers' decision making with crop biophysical modeling at the global scale to investigate how accounting for adaptation of crop phenology affects projections of future crop productivity under climate change. Farmers in each simulation unit are assumed to adapt crop growing periods by continuously selecting sowing dates and cultivars that match climatic conditions best. We compare counterfactual management scenarios, assuming crop calendars and cultivars to be either the same as in the reference climate – as often assumed in previous climate impact assessments – or adapted to future climate.</p><p>Based on crop model simulations, we find that the implementation of adapted growing periods can substantially increase (+15%) total crop production in 2080-2099 (RCP6.0). In general, summer crops are responsive to both sowing and harvest date adjustments, which result in overall longer growing periods and improved yields, compared to production systems without adaptation of growing periods. Winter wheat presents challenges in adapting to a warming climate and requires region-specific adjustments to pre and post winter conditions. We present a systematic evaluation of how local and climate-scenario specific adaptation strategies can enhance global crop productivity on current cropland. Our findings highlight the importance of further research on the readiness of required crop varieties.</p>


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


2015 ◽  
Vol 7 (1) ◽  
pp. 224-239 ◽  
Author(s):  
Haoying Wang

The goal of this paper is to analyze the impacts of climatic variation around current normals on crop yields and explore corresponding adaptation effects in Arizona, using a unique panel data. The empirical results suggest that both fertilizer use and irrigation are important adaptations to climate change in crop production. Fertilizer use has a positive impact on crop yields as expected. When accounting for irrigation and its interaction with temperature, a moderate temperature increase tends to be beneficial to both cotton and hay yields. The empirical model in this paper features with two methodological innovations, identifying the effects of temperature change conditional on adaptations and incorporating potential spatial spillover effects among input use.


Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 10-24 ◽  
Author(s):  
Jay Ram Lamichhane ◽  
Silke Dachbrodt-Saaydeh ◽  
Per Kudsk ◽  
Antoine Messéan

Whether modern agriculture without conventional pesticides will be possible or not is a matter of debate. The debate is meaningful within the context of rising health and environmental awareness on one hand, and the global challenge of feeding a steadily growing human population on the other. Conventional pesticide use has come under pressure in many countries, and some European Union (EU) Member States have adopted policies for risk reduction following Directive 2009/128/EC, the sustainable use of pesticides. Highly diverse crop production systems across Europe, having varied geographic and climatic conditions, increase the complexity of European crop protection. The economic competitiveness of European agriculture is challenged by the current legislation, which banned the use of many previously authorized pesticides that are still available and applied in other parts of the world. This challenge could place EU agricultural production at a disadvantage, so EU farmers are seeking help from the research community to foster and support integrated pest management (IPM). Ensuring stable crop yields and quality while reducing the reliance on pesticides is a challenge facing the farming community is today. Considering this, we focus on several diverse situations in European agriculture in general and in European crop protection in particular. We emphasize that the marked biophysical and socio-economic differences across Europe have led to a situation where a meaningful reduction in pesticide use can hardly be achieved. Nevertheless, improvements and/or adoption of the knowledge and technologies of IPM can still achieve large gains in pesticide reduction. In this overview, the current pest problems and their integrated management are discussed in the context of specific geographic regions of Europe, with a particular emphasis on reduced pesticide use. We conclude that there are opportunities for reduction in many parts of Europe without significant losses in crop yields.


2021 ◽  
Author(s):  
Sabina Thaler ◽  
Josef Eitzinger ◽  
Gerhard Kubu

<p>Weather-related risks can affect crop growth and yield potentials directly (e.g. heat, frost, drought) and indirectly (e.g. through biotic factors such as pests). Due to climate change, severe shifts of cropping risks may occur, where farmers need to adapt effectively and in time to increase the resilience of existing cropping systems. For example, since the early 21st century, Europe has experienced a series of exceptionally dry and warmer than usual weather conditions (2003, 2012, 2013, 2015, 2018) which led to severe droughts with devastating impacts in agriculture on crop yields and pasture productivity.</p><p>Austria has experienced above-average warming in the period since 1880. While the global average surface temperature has increased by almost 1°C, the warming in Austria during this period was nearly 2°C. Higher temperatures, changing precipitation patterns and more severe and frequent extreme weather events will significantly affect weather-sensitive sectors, especially agriculture. Therefore, the development of sound adaptation and mitigation strategies towards a "climate-intelligent agriculture" is crucial to improve the resilience of agricultural systems to climate change and increased climate variability. Within the project AGROFORECAST a set of weather-related risk indicators and tailored recommendations for optimizing crop management options are developed and tested for various forecast or prediction lead times (short term management: 10 days - 6 months; long term strategic planning: climate scenarios) to better inform farmers of upcoming weather and climate challenges.</p><p>Here we present trends of various types of long-term weather-related impacts on Austrian crop production under past (1980-2020) and future periods (2035-2065). For that purpose, agro-climatic risk indicators and crop production indicators are determined in selected case study regions with the help of models. We use for the past period Austrian gridded weather data set (INCA) as well as different regionalized climate scenarios of the Austrian Climate Change Projections ÖKS15. The calculation of the agro-climatic indicators is carried out by the existing AGRICLIM model and the GIS-based ARIS software, which was developed for estimating the impact of adverse weather conditions on crops. The crop growth model AQUACROP is used for analysing soil-crop water balance parameters, crop yields and future crop water demand.</p><p>Depending on the climatic region, a more or less clear shift in the various agro-climatic indices can be expected towards 2050, e.g. the number of "heat-stress-days" for winter wheat increases significantly in eastern Austria. Furthermore, a decreasing trend in maize yield is simulated, whereas a mean increase in yield of spring barley and winter wheat can be expected under selected scenarios. Other agro-climatic risk indicators analysed include pest algorithms, risks from frost occurrence, overwintering conditions, climatic crop growing conditions, field workability and others, which can add additional impacts on crop yield variability, not considered by crop models.</p>


2020 ◽  
Vol 35 (1-2) ◽  
Author(s):  
Tabish Akhtar ◽  
Shubham Kumar ◽  
Sukhdeo Kumar ◽  
M. R. Meena

The growth of plants promoting rhizobacteria (PGPR) has gained widespread importance in agriculture. These are beneficial bacteria found in nature that live actively in plant roots and improve plant growth and increase agricultural productivity.. (PGPR) promoting plant growth shows an important role in the sustainable agricultural industry. The increasing demand for crop production is a major challenge nowadays, with a significant lack of use of synthetic chemical fertilizers and pesticides. The use of PGPR has proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through direct or indirect mechanisms. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and dissolving nutrients for easy uptake by plants. Furthermore, PGPRs show synergistic and antagonistic interactions with microorganisms within the rhizosphere and in bulk soils, which indirectly increases plant growth rates. There are several bacteria species that act as PGPR. This review summarizes the methodology of PGPR as a bio-fertilizer in agriculture.


2020 ◽  
Vol 80 (3) ◽  
pp. 203-218
Author(s):  
T Iizumi ◽  
Z Shen ◽  
J Furuya ◽  
T Koizumi ◽  
G Furuhashi ◽  
...  

Adaptation will be essential in many sectors, including agriculture, as a certain level of warming is anticipated even after substantial climate mitigation. However, global adaptation costs and adaptation limits in agriculture are understudied. Here, we estimate the global adaptation cost and residual damage (climate change impacts after adaptation) for maize, rice, wheat and soybean using a global gridded crop model and empirical production cost models. Producers require additional expenditures under climate change to produce the same crop yields that would be achieved without climate change, and this difference is defined as the adaptation cost. On a decadal mean basis, the undiscounted global cost of climate change (adaptation cost plus residual damage) for the crops are projected to increase with warming from 63 US$ billion (B) at 1.5°C to $80 B at 2°C and to $128 B at 3°C per year. The adaptation cost gradually increases in absolute terms, but the share decreases from 84% of the cost of climate change ($53 B) at 1.5°C to 76% ($61 B) at 2°C and to 61% ($8 B) at 3°C. The residual damage increases from 16% ($10 B) at 1.5°C to 24% ($19 B) at 2°C and to 39% ($50 B) at 3°C. Once maintaining yields becomes difficult due to the biological limits of crops or decreased profitability, producers can no longer bear adaptation costs, and residual damages increase. Our estimates offer a basis to identify the gap between global adaptation needs and the funds available for adaptation.


Author(s):  
Kevin O. Odhiambo ◽  
Basil T. Iro Ong'or ◽  
Edwin K. Kanda

Abstract The adverse effects of climate change on agriculture have been felt across the globe. Smallholder farmers in sub-Sahara Africa are particularly more vulnerable to the effects of climate change leading to loss of income and livelihood thus affecting the global food security. Rainwater Harvesting (RWH) is emerging as a viable option to mitigate the negative effects of climate change by supporting rain-fed agriculture through supplemental irrigation. However, smallholder farmers are still grappling with a myriad of challenges hindering them from reaping the benefits of their investment in RWH systems. This review explores some of the factors behind the poor performance of RWH systems in Kenya and also seeks to suggest techniques that can be applied to optimize the design parameters for improved performance and the adoption of RWH systems. According to the review, RWH has the potential to mitigate the adverse effects of climate change among smallholder farmers. It allows for crop production beyond the growing season through supplemental irrigation. However, their impacts have been minimal due to the consistent poor performance of RWH systems. This is attributed to inefficiencies in design and construction brought about by lack of required technical skills among RWH system designers and implementers. Proper design and implementation are therefore paramount for better performance and adoption of RWH systems in the region. This will ensure that RWH systems are reliable, technically and economically feasible as well as possess a desirable water-saving efficiency.


2019 ◽  
Vol 5 (2) ◽  
pp. 54-61
Author(s):  
Zahir Muhammad ◽  
Naila Inayat ◽  
Abdul Majeed ◽  
Hazrat Ali ◽  
Kaleem Ullah ◽  
...  

Abstract Crop plants have defined roles in agricultural production and feeding the world. They are affected by several environmental and biological stresses, which range from soil salinity, drought, and climate change to exposure to diverse plant pathogens. These stresses pose risk to agricultural sustainability. To avoid the increasing biotic and abiotic pressure on crop plants, agrochemicals are extensively used in agriculture for attaining desirable yield and production of crops. However, the use of agrochemicals is also challenging the integrity of ecosystems. Thus, to maintain the integrity of ecosystem, sustainable measures for elevated crop production are required. Allelopathy, a process of chemical interactions between plants and other organisms, could be used in the management of several biotic and abiotic stresses if the basic mechanisms of the phenomena and plants with allelopathic potentials are known. Allelopathy has a promising future for its application in agriculture for natural weed management, improving soil health and suppressing plant diseases. The aim of this review is to discuss the importance of allelopathy in agriculture and its role in sustainability with a specific focus on weed management and crop protection.


2019 ◽  
Vol 10 (04) ◽  
pp. 1950015
Author(s):  
BORIS O. K. LOKONON ◽  
AKLESSO Y. G. EGBENDEWE ◽  
NAGA COULIBALY ◽  
CALVIN ATEWAMBA

This paper investigates the impact of climate change on agriculture in the Economic Community of West African States (ECOWAS). To that end, a bio-economic model is built and calibrated on 2004 base year dataset and the potential impact is evaluated on land use and crop production under two representative concentration pathways coupled with three socio-economic scenarios. The findings suggest that land use change may depend on crop types and prevailing future conditions. As of crop production, the results show that paddy rice, oilseeds, sugarcane, cocoa, coffee, and sesame production could experience a decline under both moderate and harsh climate conditions in most cases. Also, doubling crop yields by 2050 could overall mitigate the negative impact of moderate climate change. The magnitude and the direction of the impacts may vary in space and time.


Sign in / Sign up

Export Citation Format

Share Document