scholarly journals Allelopathy and Agricultural Sustainability: Implication in weed management and crop protection—an overview

2019 ◽  
Vol 5 (2) ◽  
pp. 54-61
Author(s):  
Zahir Muhammad ◽  
Naila Inayat ◽  
Abdul Majeed ◽  
Hazrat Ali ◽  
Kaleem Ullah ◽  
...  

Abstract Crop plants have defined roles in agricultural production and feeding the world. They are affected by several environmental and biological stresses, which range from soil salinity, drought, and climate change to exposure to diverse plant pathogens. These stresses pose risk to agricultural sustainability. To avoid the increasing biotic and abiotic pressure on crop plants, agrochemicals are extensively used in agriculture for attaining desirable yield and production of crops. However, the use of agrochemicals is also challenging the integrity of ecosystems. Thus, to maintain the integrity of ecosystem, sustainable measures for elevated crop production are required. Allelopathy, a process of chemical interactions between plants and other organisms, could be used in the management of several biotic and abiotic stresses if the basic mechanisms of the phenomena and plants with allelopathic potentials are known. Allelopathy has a promising future for its application in agriculture for natural weed management, improving soil health and suppressing plant diseases. The aim of this review is to discuss the importance of allelopathy in agriculture and its role in sustainability with a specific focus on weed management and crop protection.

Author(s):  
. Shantamma ◽  
K. T. Rangaswamy ◽  
N. B. Prakash ◽  
Raghavendra Achari

The growth rate of agricultural production is reducing worldwide every year due to mainly biotic and abiotic stresses including plant diseases. Various organic and inorganic methods are being used to protect plants from disease causing pathogens. Among them, use of pesticides is the most prevalent one incurring millions of dollars on pesticides globally for control of plant diseases. In recent years, environmental hazards and ill effects caused by indiscriminate use of pesticides have been widely discussed. Therefore, agriculture scientists are finding an alternative antimicrobial compounds such as nanoparticles for the management of diseases with least adverse effect on nature and ecosystem. Herein we reviewed the synthesis, antimicrobial efficacy and compatibility of silver nanoparticles which could help to develop the novel technology for crop protection.


2010 ◽  
Vol 25 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Randy L. Anderson

AbstractWeeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in conventional farming has reduced herbicide use by 50% because weed density declines in cropland across time. In this paper, we suggest a 9-year rotation comprised of perennial forages and annual crops that will disrupt weed population growth and reduce weed density in organic systems. Lower weed density will also improve effectiveness of weed control tactics used for an individual crop. The rotation includes 3-year intervals of no-till, which will improve both weed population management and soil health. Even though this rotation has not been field tested, it provides an example of designing rotations to disrupt population dynamics of weeds. Also, producers may gain additional benefits of higher crop yield and increased nitrogen supply with this rotation design.


Author(s):  
Deepti Malviya ◽  
Pramod Kumar Sahu ◽  
Udai B. Singh ◽  
Surinder Paul ◽  
Amrita Gupta ◽  
...  

Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 192 ◽  
Author(s):  
Domenico Ronga ◽  
Elisa Biazzi ◽  
Katia Parati ◽  
Domenico Carminati ◽  
Elio Carminati ◽  
...  

Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.


2017 ◽  
Vol 17 (1) ◽  
pp. 31-35
Author(s):  
B Oyuntogtokh ◽  
M Byambasuren

At present, plant diseases caused by soil borne plant pathogens have major constraints on crop production. Which include genera Fusarium spp, Phytophtora spp, Sclerotinia and Altenaria. Due to this reason, chemical fungicides are routinely used to control plant disease, which is also true in Mongolian case. However, use of these chemicals has caused various problems including environmental pollution with consequence of toxicity to human health also resistance of some pathogens to these fungicides are present. Fortunately, an alternative method to reduce the effect of these plant pathogens is the use of antagonist microorganisms. Therefore, some species of the genus Bacillus are recognized as one of the most effective biological control agent.Our research was focused to isolate Bacillus licheniformis, with antifungal potential, from indigenous sources. In the current study, 28 bacterial cultures were isolated from soil and fermented mare’s milk also named as koumiss. Isolated bacterial cultures were identified according to simplified key for the tentative identification of typical strain of Bacillus species. As a result 8 strains were positive and further screened for antifungal activity against Fusarium spp and Alternaria solani. Out of these 8 strains 5 strains are selected based on their high effectiveness against fungal pathogens and for further confirmation Polymerase Chain reaction run for effective bacterial strains using specific primers B.Lich-f and B.Lich-r. 


Author(s):  
N.K. Gogoi ◽  
B. Deka ◽  
L.C. Bora

Remote sensing is a rapid, non-invasive and efficient technique which can acquire and analyze spectral properties of earth surfaces from various distances, ranging from satellites to ground-based platforms. This modern technology holds promise in agricultural crop production including crop protection. Variability in the reflectance spectra of plants resulting from occurrence of disease and pests, allows their identification using remote sensing data. Various spectroscopic and imaging techniques like visible, infrared, multiband and fluorescence spectroscopy, fluorescence imaging, multispectral and hyperspectral imaging, thermography, nuclear magnetic resonance spectroscopy etc. have been studied for the detection of plant diseases. Several of these techniques have great potential in phytopathometry. Remote sensing technologies will be extremely helpful to greatly spatialize diagnostic results and thereby rendering agriculture more sustainable and safe, avoiding expensive use of pesticides in crop protection.


2016 ◽  
Vol 155 (4) ◽  
pp. 527-543 ◽  
Author(s):  
G. R. DIXON

SUMMARYCalcium cyanamide is a nitrogenous fertilizer used predominantly for over a century in field and glasshouse vegetable and salad production. The current review draws together, for the first time, knowledge concerning the biological properties of the compound that benefit crop production by encouraging sustainable soil health and quality. This is achieved through the increase of microorganisms antagonistic to plant pathogens. The review also reports on the natural occurence and degradation of cyanamide. The literature survey provides a perspective of research from the early 1900s to current studies. This identifies that nitrogen is released steadily into the rhizosphere from this fertilizer. Calcium is also readily available for plant roots and promotes the alkaline soil conditions beneficial to benign microorganisms. Consequently, soil suppressiveness towards organisms such asPlasmodiophora brassicae, the cause of clubroot disease in brassicas, develops. The effects of calcium and accompanying changes in soil pH values are discussed in relation to the life-cycle stages ofP. brassicaeand the development of clubroot disease. Formulations of calcium cyanamide contain the dimeric form, dicyandiamide. This compound slows soil nitrification and subsequent nitrate leaching into ground waters, reducing potential pollution. Calcium cyanamide is normally used for growing specialized fresh produce and is not available in quantities comparable with ammoniacal fertilizers. It is contended, however, that it has properties deserving wider assessment because of their implications for sustainable cropping.


2020 ◽  
Author(s):  
Thomas M. Chaloner ◽  
Sarah J. Gurr ◽  
Daniel P. Bebber

AbstractGlobal food security is strongly determined by crop production. Climate change will not only affect crop yields directly, but also indirectly via the distributions and impacts of plant pathogens that can cause devastating production losses. However, the likely changes in pathogen pressure in relation to global crop production are poorly understood. Here we show that disease risk for 79 fungal and oomycete crop pathogens will closely track projected yield changes in 12 major crops over the 21st Century. For most crops, yields are likely to increase at high latitudes but disease risk will also grow. In addition, the USA, Europe and China will experience major changes in pathogen assemblages. In contrast, while the tropics will see little or no productivity gains, the disease burden is also likely to decline. The benefits of yield gains will therefore be tempered by the increased burden of crop protection.


BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 469-477
Author(s):  
Yen-Wen Kuo ◽  
Bryce W Falk

Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.


2014 ◽  
Vol 70 (a1) ◽  
pp. C801-C801
Author(s):  
Richard Hughes ◽  
Stuart King ◽  
Abbas Maqbool ◽  
Hazel McLellan ◽  
Tolga Bozkurt ◽  
...  

An estimated 15% of global crop production is lost to pre-harvest disease every year. New ways to manage plant diseases are required. A mechanistic understanding of how plant pathogens re-program their hosts to enable colonisation may provide novel genetic or chemical opportunities to interfere with disease. One notorious plant parasite is the Irish potato famine pathogen Phytophthora infestans. This pathogen remains a considerable threat to potato/tomato crops today as the agent of late blight. Plant pathogens secrete effector proteins outside of and into plant cells to suppress host defences and manipulate cell physiology. Structural studies have provided insights into effector evolution and enabled experiments to probe function [1-3]. Crystal structures of 4 Phytophthora RXLR-type effectors, which are unrelated in primary sequence, revealed similarities in the fold of these proteins. This fold was proposed to act as a stable scaffold that supports diversification of effectors. Further, molecular modelling has enabled mapping of single-site variants responsible for specialisation of a Phytophthora Cystatin-like effector, revealing how effectors can adapt to new hosts after a "host jump". Structural studies describing how RXLR-effectors interact with host targets are lacking. We have used Y2H/co-IP studies to identify host proteins that interact with P. infestans effectors PexRD2 and PexRD54. PexRD2 interacts with MAPKKKe, a component of plant immune signalling pathways, and suppressed cell death activities of this protein. We used the structure of PexRD2 to design mutants that fail to interact with MAPKKKe, and no longer suppress cell-death activities. We found that PexRD54 interacts with potato homologues of the autophagy protein ATG8. We have obtained a crystal structure for PexRD54 in the presence of ATG8. We are now using X-ray scattering to verify the complex structure in solution prior to establishing the role of this interaction during infection.


Sign in / Sign up

Export Citation Format

Share Document