scholarly journals SARS-CoV-2 spillover into hospital outdoor environments

Author(s):  
Dayi Zhang ◽  
Yunfeng Yang ◽  
Xia Huang ◽  
Jingkun Jiang ◽  
Miao Li ◽  
...  

The outbreak of coronavirus infectious disease-2019 (COVID-19) pandemic has rapidly spread throughout over 200 countries, posing a global threat to human health. Till 15th May 2020, there are over 4.5 million confirmed cases, with roughly 300,000 death1. To date, most studies focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in indoor environment owing to its main transmission routes via human respiratory droplets and direct contact2,3. It remains unclear whether SARS-CoV-2 can spill over and impose transmission risks to outdoor environments despite potential threats to people and communities. Here, we investigated the presence of SARS-CoV-2 by measuring viral RNA in 73 samples from outdoor environment of three hospitals in Wuhan. We detected SARS-CoV-2 in soils (205-550 copies/g), aerosols (285-1,130 copies/m3) and wastewaters (255 to 18,744 copies/L) in locations close to hospital departments receiving COVID-19 patients or in wastewater treatment sectors. These findings reveal significant viral spillover in hospital outdoor environments that was possibly caused by respiratory droplets from patients or aerosolized particles from wastewater containing SARS-CoV-2. In contrast, SARS-CoV-2 was not detected in other areas or on surfaces with regular disinfection implemented. Soils may behave as viral warehouse through deposition and serve as a secondary source spreading SARS-CoV-2 for a prolonged time. For the first time, our findings demonstrate that there are high-risk areas in hospital outdoor environments to spread SARS-CoV-2, calling for sealing of wastewater treatment unit and complete sanitation to prevent COVID-19 transmission risks.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6506-6525
Author(s):  
Safa Abdel-Kader Mohamed Hamed ◽  
Mohamed Z. M. Salem ◽  
Hayssam M. Ali ◽  
Kareem Mohamed El-Sayed Ahmed

A new perspective on the effect of unconditioned indoor (especially storage areas) and outdoor environments on wood acidity is provided in this work. A comparison between the quantity and types of the organic acids formed in the unconditioned indoor environment and different outdoor environments was made. Moreover, the acidity of some wood samples due to different environmental conditions was determined using a pH meter and high-performance liquid chromatography (HPLC). Fourier transform infrared (FTIR) was used to detect the changes in wood components at the molecular level due to environmental conditions. The results suggest that the unconditioned indoor environment was more aggressive than the outdoor environment with respect to wood deterioration. The polluted atmosphere increased the wood acidity and motivated polysaccharide breakdown.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 153-160 ◽  
Author(s):  
Pradeep Kumar ◽  
R. J. Garde

With increasing stress on existing wastewater treatment systems, it is necessary either to upgrade the treatment unit(s) or install an entirely new treatment plant. Obviously, the upgrading is preferred over the alternative of having a new system. Keeping this in view, in the present project, an attempt has been made to explore the possibility of upgrading existing facultative ponds using water hyacinth. Bench-scale batch studies were designed to compare the performance of hyacinth treatment system with facultative ponds. Investigations were carried out with synthetic wastewater having COD in the range of 32.5-1090 mg/l. The efficiency of COD removal in water hyacinth ponds was 15-20 percent more than the facultative ponds. Based on the results, an empirical model has been proposed for COD removal kinetics. In the second phase of the project a hyacinth pond was continuously operated. BOD, COD, TS, TN, TP, pH, and DO were regularly monitored. However, the DO of the effluent from hyacinth treatment system was considerably reduced. Effluent should be aerated before it is discharged. The results indicate that the existing facultative ponds can be stalked with water hyacinth to improve their performance as well as hyacinth treatment systems can be installed to support the conventional treatment.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3955
Author(s):  
Jung-Cheng Yang ◽  
Chun-Jung Lin ◽  
Bing-Yuan You ◽  
Yin-Long Yan ◽  
Teng-Hu Cheng

Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-denied environment, other sources of localization are required for UAVs to conduct feedback control and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused to generate high-frequency odometry, with only few extra computation resources. To achieve this goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-precision and high-frequency odometry for the feedback control of UAVs in an indoor environment, and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved, even when the device is stationary. To further reduce the accumulated pose errors, loop closure and pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI) are also conducted to compare the performance with other methods, and the results show that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater position accuracy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun-ichi Kanatani ◽  
Masanori Watahiki ◽  
Keiko Kimata ◽  
Tomoko Kato ◽  
Kaoru Uchida ◽  
...  

Abstract Background Legionellosis is caused by the inhalation of aerosolized water contaminated with Legionella bacteria. In this study, we investigated the prevalence of Legionella species in aerosols collected from outdoor sites near asphalt roads, bathrooms in public bath facilities, and other indoor sites, such as buildings and private homes, using amoebic co-culture, quantitative PCR, and 16S rRNA gene amplicon sequencing. Results Legionella species were not detected by amoebic co-culture. However, Legionella DNA was detected in 114/151 (75.5%) air samples collected near roads (geometric mean ± standard deviation: 1.80 ± 0.52 log10 copies/m3), which was comparable to the numbers collected from bathrooms [15/21 (71.4%), 1.82 ± 0.50] but higher than those collected from other indoor sites [11/30 (36.7%), 0.88 ± 0.56] (P < 0.05). The amount of Legionella DNA was correlated with the monthly total precipitation (r = 0.56, P < 0.01). It was also directly and inversely correlated with the daily total precipitation for seven days (r = 0.21, P = 0.01) and one day (r = − 0.29, P < 0.01) before the sampling day, respectively. 16S rRNA gene amplicon sequencing revealed that Legionella species were detected in 9/30 samples collected near roads (mean proportion of reads, 0.11%). At the species level, L. pneumophila was detected in 2/30 samples collected near roads (the proportion of reads, 0.09 and 0.11% of the total reads number in each positive sample). The three most abundant bacterial genera in the samples collected near roads were Sphingomonas, Streptococcus, and Methylobacterium (mean proportion of reads; 21.1%, 14.6%, and 1.6%, respectively). In addition, the bacterial diversity in outdoor environment was comparable to that in indoor environment which contains aerosol-generating features and higher than that in indoor environment without the features. Conclusions DNA from Legionella species was widely present in aerosols collected from outdoor sites near asphalt roads, especially during the rainy season. Our findings suggest that there may be a risk of exposure to Legionella species not only in bathrooms but also in the areas surrounding asphalt roads. Therefore, the possibility of contracting legionellosis in daily life should be considered.


2020 ◽  
pp. 1420326X2097546
Author(s):  
Richard A Sharpe ◽  
Andrew J Williams ◽  
Ben Simpson ◽  
Gemma Finnegan ◽  
Tim Jones

Fuel poverty affects around 34% of European homes, representing a considerable burden to society and healthcare systems. This pilot study assesses the impact of an intervention to install a new first time central heating system in order to reduce fuel poverty on household satisfaction with indoor temperatures/environment, ability to pay bills and mental well-being. In Cornwall, 183 households received the intervention and a further 374 went onto a waiting list control. A post-intervention postal questionnaires and follow-up phone calls were undertaken ( n = 557) to collect data on household demographics, resident satisfaction with indoor environment, finances and mental well-being (using the Short Warwick-Edinburgh Mental Wellbeing scale). We compared responses between the waiting list control and intervention group to assess the effectiveness of the intervention. A total of 31% of participants responded, 83 from the waiting list control and 71 from the intervention group. The intervention group reported improvements in the indoor environment, finances and mental well-being. However, these benefits were not expressed by all participants, which may result from diverse resident behaviours, lifestyles and housing characteristics. Future policies need to consider whole house approaches alongside resident training and other behaviour change techniques that can account for complex interactions between behaviours and the built environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


2018 ◽  
Vol 878 ◽  
pp. 202-209 ◽  
Author(s):  
Feng Qian ◽  
Li Yang

The natural ventilation of residential areas has placed more and more emphasis on residential area planning, according to the relationship between natural ventilation environments and the layout of architecture, we can reduce the energy consumption and the adverse effect of wind outdoors, improve the living environment and quality of life, making harmony between human and the nature. In this paper, we use Air-Pak to simulate the wind environment of residential areas. Through analyzing and simulating the air field which forms when the wind blows around the residential buildings by Air-Pak, we explain the advantage of the combination of computer simulation software and residential area planning. And we give some advice to the layout of the outdoor environment early in the residential planning area by the simulation of outdoor environments of buildings.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2764
Author(s):  
Argyro Plevri ◽  
Klio Monokrousou ◽  
Christos Makropoulos ◽  
Christos Lioumis ◽  
Nikolaos Tazes ◽  
...  

Water reuse and recycling is gaining momentum as a way to improve the circularity of cities, while recognizing the central role of water within a circular economy (CE) context. However, such interventions often depend on the location of wastewater treatment plants and the treatment technologies installed in their premises, while relying on an expensive piped network to ensure that treated wastewater gets transported from the treatment plant to the point of demand. Thus, the penetration level of treated wastewater as a source of non-potable supply in dense urban environments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a source of treated wastewater, as part of a larger and more holistic configuration that examines all three ‘streams’ associated with water in CE: water, energy and materials. The application area is the Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly and reuse at the point of demand even in urban environments with limited space. The unit consists of a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise the holistic approach and circularity of the whole configuration. The SM technology demonstrates flexibility, scalability and replicability, which are important characteristics for innovation uptake within the emerging CE context and market.


2012 ◽  
Vol 5 (1) ◽  
pp. 37-43 ◽  
Author(s):  
S. Frazer ◽  
J. Pestka ◽  
J. Kim ◽  
A. Medina ◽  
D. Aldred ◽  
...  

The black mould Stachybotrys chartarum and its mycotoxins have been linked to damp building-associated illnesses. The objective of this study was to determine the effects of water availability (water activity, aw) and temperature on growth and production of satratoxin G (SG) by a macrocyclic trichothecene-producing strain (IBT 7711) and non-producing strain (IBT 1495) of S. chartarum. Growth studies were carried out on potato dextrose agar modified with glycerol to 0.995-0.92 aw at 10-37 °C. Growth extension was measured and the cultures were extracted after 10 days and a competitive enzyme-linked immunosorbent assay (ELISA) method used to quantify the SG content. Growth was optimal at 25 to 30 °C at 0.995 aw, but this was modified to 0.98 aw at 30 °C for both strains (1.4-1.6 mm/day, respectively). The ELISA method revealed that, in contrast to growth, SG production was maximal at 20 °C with highest production at 0.98 aw (approximately 250 μg/g mycelia). When water was freely available (0.995 aw), SG was maximally produced at 15 °C and decreased as temperature was increased. Interestingly, the strain classified as a non-toxigenic produced very low amounts of SG (<1.6 μg/g mycelia) that were maximal at 25 °C and 0.98 aw. Contour maps for growth and SG production were developed from these data sets. These data have shown, for the first time, that growth and SG production profiles are very different in relation to key environmental conditions in the indoor environment. This will be very useful in practically determining the risk from exposure to S. chartarum and its toxins in the built environment.


Sign in / Sign up

Export Citation Format

Share Document