scholarly journals Genomic region associated with pod color variation in pea (Pisum sativum)

Author(s):  
Kenta Shirasawa ◽  
Kazuhiro Sasaki ◽  
Hideki Hirakawa ◽  
Sachiko Isobe

SUMMARYPea (Pisum sativum) was chosen as the research material by Gregor Mendel to discover the laws of inheritance. Out of seven traits studied by Mendel, genes controlling three traits including pod shape, pod color, and flower position have not been identified to date. With the aim to identify the genomic region controlling pod color, we determined the genome sequence of a pea line with yellow pods. Genome sequence reads obtained using a nanopore sequencing technology were assembled into 117,981 contigs that spanned 3.3 Gb in length and showed an N50 value of 51.2 kb. Using single nucleotide polymorphisms (SNPs) detected in a pea mapping population, these contigs were genetically anchored to the publicly available pseudomolecule sequences of the pea genome. Subsequent genetic and association analyses identified a genomic region responsible for pea pod color. At this genomic location, genes encoding 3’ exoribonucleases were selected as potential candidates controlling pod color, based on DNA sequencing and transcriptome analysis of green and yellow pod lines. The results presented in this study are expected to accelerate pan-genome studies in pea and facilitate the identification of the gene controlling one of the traits studied by Mendel.

Author(s):  
Kenta Shirasawa ◽  
Kazuhiro Sasaki ◽  
Hideki Hirakawa ◽  
Sachiko Isobe

Abstract Pea (Pisum sativum) was chosen as the research material by Gregor Mendel to discover the laws of inheritance. Out of seven traits studied by Mendel, genes controlling three traits including pod shape, pod color, and flower position have not been identified to date. With the aim of identifying the genomic region controlling pod color, we determined the genome sequence of a pea line with yellow pods. Genome sequence reads obtained using a Nanopore sequencing technology were assembled into 117,981 contigs (3.3 Gb), with an N50 value of 51.2 kb. A total of 531,242 potential protein-coding genes were predicted, of which 519,349 (2.8 Gb) were located within repetitive sequences (2.8 Gb). The assembled sequences were ordered using a reference as a guide to build pseudomolecules. Subsequent genetic and association analyses led to the identification of a genomic region that controls pea pod color. DNA sequences at this genomic location and transcriptome profiles of green and yellow pod lines were analyzed, and genes encoding 3' exoribonucleases were selected as potential candidates controlling pod color. The results presented in this study are expected to accelerate pan-genome studies in pea and facilitate the identification of the gene controlling one of the traits studied by Mendel.


2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Erika Calvano Küchler ◽  
Caio Luiz Bitencourt Reis ◽  
Guido Marañón-Vásquez ◽  
Paulo Nelson-Filho ◽  
Mírian Aiko Nakane Matsumoto ◽  
...  

In this study we evaluated whether single nucleotide polymorphisms (SNPs) in the genes encoding PTH, VDR, CYP24A1, and CYP27B1 were associated with mandibular retrognathism (MR). Samples from biologically-unrelated Brazilian patients receiving orthodontic treatment were included in this study. Pre-orthodontic lateral cephalograms were used to determine the phenotype. Patients with a retrognathic mandible were selected as cases and those with an orthognathic mandible were selected as controls. Genomic DNA was used for genotyping analysis of SNPs in PTH (rs694, rs6256, and rs307247), VDR (rs7975232), CYP24A1 (rs464653), and CYP27B1 (rs927650). Chi-squared or Fisher’s tests were used to compare genotype and allele distribution among groups. Haplotype analysis was performed for the SNPs in PTH. The established alpha was p < 0.05. Multifactor dimensionality reduction (MDR) was used to identify SNP–SNP interactions. A total of 48 (22 males and 26 females) MR and 43 (17 males and 26 females) controls were included. The linear mandibular and the angular measurements were statistically different between MR and controls (p < 0.05). In the genotype and allele distribution analysis, the SNPs rs694, rs307247, and rs464653 were associated with MR (p < 0.05). MDR analyses predicted the best interaction model for MR was rs694–rs927650, followed by rs307247–rs464653–rs927650. Some haplotypes in the PTH gene presented statistical significance. Our results suggest that SNPs in PTH, VDR, CYP24A1, and CYP27B1 genes are associated with the presence of mandibular retrognathism.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 686
Author(s):  
Alireza Nazarian ◽  
Alexander M. Kulminski

Almost all complex disorders have manifested epidemiological and clinical sex disparities which might partially arise from sex-specific genetic mechanisms. Addressing such differences can be important from a precision medicine perspective which aims to make medical interventions more personalized and effective. We investigated sex-specific genetic associations with colorectal (CRCa) and lung (LCa) cancers using genome-wide single-nucleotide polymorphisms (SNPs) data from three independent datasets. The genome-wide association analyses revealed that 33 SNPs were associated with CRCa/LCa at P < 5.0 × 10−6 neither males or females. Of these, 26 SNPs had sex-specific effects as their effect sizes were statistically different between the two sexes at a Bonferroni-adjusted significance level of 0.0015. None had proxy SNPs within their ±1 Mb regions and the closest genes to 32 SNPs were not previously associated with the corresponding cancers. The pathway enrichment analyses demonstrated the associations of 35 pathways with CRCa or LCa which were mostly implicated in immune system responses, cell cycle, and chromosome stability. The significant pathways were mostly enriched in either males or females. Our findings provided novel insights into the potential sex-specific genetic heterogeneity of CRCa and LCa at SNP and pathway levels.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 571
Author(s):  
Fengyan Wang ◽  
Mingxing Chu ◽  
Linxiang Pan ◽  
Xiangyu Wang ◽  
Xiaoyun He ◽  
...  

Litter size is one of the most important economic traits in sheep. GDF9 and BMPR1B are major genes affecting the litter size of sheep. In this study, the whole coding region of GDF9 was sequenced and all the SNPs (single nucleotide polymorphisms) were determined in Luzhong mutton ewes. The FecB mutation was genotyped using the Sequenom MassARRAY®SNP assay technology. Then, the association analyses between polymorphic loci of GDF9 gene, FecB, and litter size were performed using a general linear model procedure. The results showed that eight SNPs were detected in GDF9 of Luzhong mutton sheep, including one novel mutation (g.41769606 T > G). The g.41768501A > G, g.41768485 G > A in GDF9 and FecB were significantly associated with litter size in Luzhong mutton ewes. The g.41768485 G > A is a missense mutation in the mature GDF9 protein region and is predicted to affect the tertiary structure of the protein. The results preliminarily demonstrated that GDF9 was a major gene affecting the fecundity of Luzhong mutton sheep and the two loci g.41768501A > G and g.41768485 G > A may be potential genetic markers for improving litter size.


2021 ◽  
Vol 7 (11) ◽  
pp. eabd1239
Author(s):  
Mark Simcoe ◽  
Ana Valdes ◽  
Fan Liu ◽  
Nicholas A. Furlotte ◽  
David M. Evans ◽  
...  

Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guanghui An ◽  
Jiongjiong Chen

Abstract Background Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. Result In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3’region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3’H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3’region of the allele BjMYB113c. Conclusions Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Author(s):  
Gloria Pérez-Rubio ◽  
Luis Alberto López-Flores ◽  
Ana Paula Cupertino ◽  
Francisco Cartujano-Barrera ◽  
Luz Myriam Reynales-Shigematsu ◽  
...  

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuan Cai ◽  
Jun Dong ◽  
Teng Lu ◽  
Liqiang Zhi ◽  
Xijing He

Abstract Background Osteoporosis (OP) is a complex bone metabolism disorder characterized by the loss of bone minerals and an increased risk of bone fracture. A recent study reported the relationship of the macrophage erythroblast attacher gene (MAEA) with low bone mineral density in postmenopausal Japanese women. Our study aimed to investigate the association of MAEA with postmenopausal osteoporosis (PMOP) in Han Chinese individuals. Methods A total of 968 unrelated postmenopausal Chinese women comprising 484 patients with PMOP and 484 controls were recruited. Four tag single nucleotide polymorphisms (SNPs) that covered the gene region of MAEA were chosen for genotyping. Single SNP and haplotypic association analyses were performed, and analysis of variance was conducted to test the correlation between blood MAEA protein level and genotypes of associated SNPs. Results SNP rs6815464 was significantly associated with the risk of PMOP. The C allele of rs6815464 was strongly correlated with the decreased risk of PMOP in our study subjects (OR[95% CI]=0.75[0.63-0.89], P=0.0015). Significant differences in MAEA protein blood levels among genotypes of SNP rs6815464 were identified in both the PMOP (F=6.82, P=0.0012) and control groups (F=11.5, P=0.00001). The C allele was positively associated with decreased MAEA protein levels in blood. Conclusion This case-control study on Chinese postmenopausal women suggested an association between SNP rs6815464 of MAEA and PMOP. Further analyses showed that genotypes of SNP rs6815464 were also associated with the blood level of MAEA protein.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xingyi Wang ◽  
Hui Liu ◽  
Kadambot H. M. Siddique ◽  
Guijun Yan

Abstract Background Pre-harvest sprouting (PHS) in wheat can cause severe damage to both grain yield and quality. Resistance to PHS is a quantitative trait controlled by many genes located across all 21 wheat chromosomes. The study targeted a large-effect quantitative trait locus (QTL) QPhs.ccsu-3A.1 for PHS resistance using several sets previously developed near-isogenic lines (NILs). Two pairs of NILs with highly significant phenotypic differences between the isolines were examined by RNA sequencing for their transcriptomic profiles on developing seeds at 15, 25 and 35 days after pollination (DAP) to identify candidate genes underlying the QTL and elucidate gene effects on PHS resistance. At each DAP, differentially expressed genes (DEGs) between the isolines were investigated. Results Gene ontology and KEGG pathway enrichment analyses of key DEGs suggested that six candidate genes underlie QPhs.ccsu-3A.1 responsible for PHS resistance in wheat. Candidate gene expression was further validated by quantitative RT-PCR. Within the targeted QTL interval, 16 genetic variants including five single nucleotide polymorphisms (SNPs) and 11 indels showed consistent polymorphism between resistant and susceptible isolines. Conclusions The targeted QTL is confirmed to harbor core genes related to hormone signaling pathways that can be exploited as a key genomic region for marker-assisted selection. The candidate genes and SNP/indel markers detected in this study are valuable resources for understanding the mechanism of PHS resistance and for marker-assisted breeding of the trait in wheat.


Sign in / Sign up

Export Citation Format

Share Document