scholarly journals Inhibition of Extracellular Vesicle-Associated MMP2 Abrogates Intercellular Transfer of Hepatic miR-122 to Tissue Macrophages and Curtails Liver Inflammation

2021 ◽  
Author(s):  
Arnab Das ◽  
Sudarshana Basu ◽  
Diptankar Bandyopadhyay ◽  
Debduti Dutta ◽  
Sreemoyee Chakrabarti ◽  
...  

AbstractmicroRNA-122 (miR-122), a liver specific regulatory RNA, plays an important role in controlling metabolic homeostasis in mammalian liver cells. Interestingly, miR-122 is also a proinflammatory microRNA and when exported to tissue resident macrophage induces expression of inflammatory cytokines there. We found intercellular transfer of miR-122 in lipid exposed liver plays a role in liver inflammation. Exploring the mechanism of intercellular miR-122 transfer from hepatic cells, we detected MMP2 on the membrane of extracellular vesicles derived from hepatic cells which proved to be essential for transfer of extracellular vesicles and their miRNA content from hepatic to non-hepatic cells. Matrix metalloprotease 2 or MMP2 is a metalloproteinase that plays a key role in shaping and remodelling the extracellular matrix of human tissue by targeting degradation of matrix proteins. MMP2 was found to increase the movement of the EVs along the extracellular matrix to enhance their uptake in recipient cells. Inhibition of MMP2 restricts functional transfer of hepatic miRNAs across the hepatic and non-hepatic cell boundaries. By targeting MMP2, we could reduce the innate immune response in mammalian liver by preventing intra-tissue miR-122 transfer.Abstract FigureHuman hepatocytes on exposure to high lipid export out miRNAs including proinflammatory miR-122.Extracellular miR-122 is taken up by tissue macrophages to get them activated to produce inflammatory cytokines.MMP2 present on the surface of the EVs released by hepatocyte is essential for miRNA transfer to macrophage cellsInhibition of MMP2 prevents miR-122 transfer to macrophage and stops activation of recipient macrophage.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Lebedeva ◽  
Wendy Fitzgerald ◽  
Ivan Molodtsov ◽  
Alexander Shpektor ◽  
Elena Vasilieva ◽  
...  

AbstractA proinflammatory dysregulation of cytokine release is associated with various diseases, in particular with those of infectious etiology, as well as with cardiovascular diseases (CVD). We showed earlier that cytokines are released in two forms, soluble and in association with extracellular vesicles (EVs). Here, we investigated the patterns of expression and clustering of soluble and EV-associated cytokines in patients with ST-elevation myocardial infarction (STEMI). We collected plasma samples from 48 volunteers without CVD and 62 patients with STEMI, separated soluble and EV fractions, and analyzed them for 33 cytokines using a multiplexed bead-based assay. We identified soluble and EV-associated cytokines that are upregulated in STEMI and form correlative clusters. Several clustered soluble cytokines were expressed almost exclusively in patients with STEMI. EV-associated cytokines were largely not affected by STEMI, except for pro-inflammatory cytokines IL-6, IL-18, and MIG, as well as anti-inflammatory IL-2 that were upregulated in a correlated fashion. Our results demonstrated that soluble cytokines in patients with STEMI are upregulated in a coordinated fashion in contrast to the mainly unaffected system of EV-associated cytokines. Identification of cytokine clusters affected differently by STEMI now permits investigation of their differential contributions to this pathology.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 592
Author(s):  
Sung-Han Jo ◽  
Seon-Hwa Kim ◽  
Changsu Kim ◽  
Sang-Hyug Park

Representative marine materials such as biopolymers and bioceramics contain bioactive properties and are applied in regenerative medicine and tissue engineering. The marine organism-derived extracellular matrix (ECM), which consists of structural and functional molecules, has been studied as a biomaterial. It has been used to reconstruct tissues and improve biological functions. However, research on marine-derived extracellular vesicles (EVs) among marine functional materials is limited. Recent studies on marine-derived EVs were limited to eco-system studies using bacteria-released EVs. We aimed to expand the range of representative marine organisms such as fish, crustaceans, and echinoderms; establish the extraction process; and study the bioactivity capability of marine EVs. Results confirmed that marine organism ECM-anchored EVs (mEVs) have a similar morphology and cargos to those of EVs in land animals. To investigate physiological effects, lipopolysaccharide (LPS)-infected macrophages were treated with EVs derived from sea cucumber, fish, and shrimp. A comparison of the expression levels of inflammatory cytokine genes revealed that all types of mEVs alleviated pro-inflammatory cytokines, although to different degrees. Among them, the sea cucumber-derived EVs showed the strongest suppression ability. This study showed that research on EVs derived from various types of marine animals can lead to the development of high value-added therapeutics from discarded marine wastes.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A737-A737
Author(s):  
Loise Francisco-Anderson ◽  
Loise Francisco-Anderson ◽  
Mary Abdou ◽  
Michael Goldberg ◽  
Erin Troy ◽  
...  

BackgroundThe small intestinal axis (SINTAX) is a network of anatomic and functional connections between the small intestine and the rest of the body. It acts as an immunosurveillance system, integrating signals from the environment that affect physiological processes throughout the body. The impact of events in the gut in the control of tumor immunity is beginning to be appreciated. We have previously shown that an orally delivered single strain of commensal bacteria induces anti-tumor immunity preclinically via pattern recognition receptor-mediated activation of innate and adaptive immunity. Some bacteria produce extracellular vesicles (EVs) that share molecular content with the parent bacterium in a particle that is roughly 1/1000th the volume in a non-replicating form. We report here an orally-delivered and gut-restricted bacterial EV which potently attenuates tumor growth to a greater extent than whole bacteria or checkpoint inhibition.MethodsEDP1908 is a preparation of extracellular vesicles produced by a gram-stain negative strain of bacterium of the Oscillospiraceae family isolated from a human donor. EDP1908 was selected for its immunostimulatory profile in a screen of EVs from a range of distinct microbial strains. Its mechanism of action was determined by ex vivo analysis of the tumor microenvironment (TME) and by in vitro functional studies with murine and human cells.ResultsOral treatment of tumor-bearing mice with EDP1908 shows superior control of tumor growth compared to checkpoint inhibition (anti-PD-1) or an intact microbe. EDP1908 significantly increased the percentage of IFNγ and TNF producing CD8+ CTLs, NK cells, NKT cells and CD4+ cells in the tumor microenvironment (TME). EDP1908 also increased tumor-infiltrating dendritic cells (DC1 and DC2). Analysis of cytokines in the TME showed significant increases in IP-10 and IFNg production in mice treated with EDP1908, creating an environment conducive to the recruitment and activation of anti-tumor lymphocytes.ConclusionsThis is the first report of striking anti-tumor effects of an orally delivered microbial extracellular vesicle. These data point to oral EVs as a new class of immunotherapeutic drugs. They are particularly effective at harnessing the biology of the small intestinal axis, acting locally on host cells in the gut to control distal immune responses within the TME. EDP1908 is in preclinical development for the treatment of cancer.Ethics ApprovalPreclinical murine studies were conducted under the approval of the Avastus Preclinical Services’ Ethics Board. Human in vitro samples were attained by approval of the IntegReview Ethics Board; informed consent was obtained from all subjects.


2021 ◽  
pp. 135245852098754
Author(s):  
Gloria Dalla Costa ◽  
Tommaso Croese ◽  
Marco Pisa ◽  
Annamaria Finardi ◽  
Lorena Fabbella ◽  
...  

Background: Extracellular vesicles (EVs), a recently described mechanism of cell communication, are released from activated microglial cells and macrophages and are a candidate biomarker in diseases characterized by chronic inflammatory process such as multiple sclerosis (MS). Methods: We explored cerebrospinal fluid extracellular vesicle (CSF EV) of myeloid origin (MEVs), cytokine and chemokine levels in patients with clinically isolated syndrome (CIS). Results: We found that CSF MEVs were significantly higher in CIS patients than in controls and were inversely correlated to CSF CCL2 levels. MEVs level were significantly associated with an shorter time to evidence of disease activity (hazard ratio: 1.01, 95% confidence interval: 1.00–1.02, p < 0.01) independently from other known prognostic markers. Conclusion: After a first demyelinating event, CSF EVs may improve risk stratification of these patients and allow more targeted intervention strategies.


2021 ◽  
Vol 22 (15) ◽  
pp. 7847
Author(s):  
Anthony Fringuello ◽  
Philip D. Tatman ◽  
Tadeusz Wroblewski ◽  
John A. Thompson ◽  
Xiaoli Yu ◽  
...  

Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Shibo Cheng ◽  
Yutao Li ◽  
He Yan ◽  
Yunjie Wen ◽  
Xin Zhou ◽  
...  

Extracellular vesicles (EVs) secreted by cells into the bloodstream and other bodily fluids, including exosomes, have been demonstrated to be a class of significant messengers that mediate intercellular communications. Tumor-derived...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samira Ahmadvand Koohsari ◽  
Abdorrahim Absalan ◽  
Davood Azadi

AbstractThe therapeutic effects of mesenchymal stem cells-extracellular vesicles have been proved in many inflammatory animal models. In the current study, we aimed to investigate the effect of extracellular vesicles (EVs) derived from human umbilical cord-MSC (hUCSC-EV) on the clinical score and inflammatory/anti-inflammatory cytokines on the EAE mouse model. After induction of EAE in C57Bl/6 mice, they were treated intravenously with hUCSC-EV or vehicle. The clinical score and body weight of all mice was registered every day. On day 30, mice were sacrificed and splenocytes were isolated for cytokine assay by ELISA. Cytokine expression of pro-/anti-inflammatory cytokine by real-time PCR, leukocyte infiltration by hematoxylin and eosin (H&E) staining, and the percent of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) positive cells by immunohistochemistry were assessed in the spinal cord. Our results showed that hUCSC-EV-treated mice have lower maximum mean clinical score (MMCS), pro-inflammatory cytokines, and inflammatory score in comparison to the control mice. We also showed that hUCSC-EV administration significantly improved body weight and increased the anti-inflammatory cytokines and the frequency of Treg cells in the spleen. There was no significant difference in the percent of GFAP and MBP positive cells in the spinal cord of experimental groups. Finally, we suggest that intravenous administration of hUCSC-EV alleviate induce-EAE by reducing the pro-inflammatory cytokines, such as IL-17a, TNF-α, and IFN-γ, and increasing the anti-inflammatory cytokines, IL-4 and IL-10, and also decrease the leukocyte infiltration in a model of MS. It seems that EVs from hUC-MSCs have the same therapeutic effects similar to EVs from other sources of MSCs, such as adipose or bone marrow MSCs.


Author(s):  
Dan Li ◽  
Wenjia Lai ◽  
Di Fan ◽  
Qiaojun Fang

Breast cancer is the most common malignant disease in women worldwide. Early diagnosis and treatment can greatly improve the management of breast cancer. Liquid biopsies are becoming convenient detection methods for diagnosing and monitoring breast cancer due to their non-invasiveness and ability to provide real-time feedback. A range of liquid biopsy markers, including circulating tumor proteins, circulating tumor cells, and circulating tumor nucleic acids, have been implemented for breast cancer diagnosis and prognosis, with each having its own advantages and limitations. Circulating extracellular vesicles are messengers of intercellular communication that are packed with information from mother cells and are found in a wide variety of bodily fluids; thus, they are emerging as ideal candidates for liquid biopsy biomarkers. In this review, we summarize extracellular vesicle protein markers that can be potentially used for the early diagnosis and prognosis of breast cancer or determining its specific subtypes.


Sign in / Sign up

Export Citation Format

Share Document