scholarly journals AdipoAtlas: A Reference Lipidome for Human White Adipose Tissue

2021 ◽  
Author(s):  
Mike Lange ◽  
Georgia Angelidou ◽  
Zhixu Ni ◽  
Angela Criscuolo ◽  
Jürgen Schiller ◽  
...  

SummaryObesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodelling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodelling at the molecular level, we performed in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. Tissue-tailored preanalytical and analytical workflows allowed accurate identification and semi-absolute quantification of 1636 and 737 lipid molecular species, respectively, and summarized here in a form of human WAT reference lipidome. Deep lipidomic profiling allowed to identify main lipid (sub)classes undergoing depot/phenotype specific remodelling. Furthermore, previously unanticipated diversity of WAT ceramides was uncovered. AdipoAtlas reference lipidome will serve as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.

2021 ◽  
Author(s):  
Shigeru Murakami ◽  
Chihiro Hirazawa ◽  
Rina Yoshikawa ◽  
Toshiki Mizutani ◽  
Takuma Ohya ◽  
...  

Abstract Background: The obesity epidemic has become a serious public health problem in many countries worldwide. Seaweed has few calories and is rich in active nutritional components necessary for health promotion and disease prevention. The aim of this study was to investigate the effects of the Campylaephora hypnaeoides J. Agardh (C. hypnaeoides), an edible seaweed traditionally eaten in Japan, on high-fat (HF) diet-induced obesity and related metabolic diseases in mice.Methods: Male C57BL/6J mice were randomly divided into the following groups: normal diet group, HF diet group, HF diet supplemented with 2% C. hypnaeoides, and HF diet supplemented with 6% C. hypnaeoides. After 13 weeks of treatment, the weight of the white adipose tissue and liver, and the serum levels of glucose, insulin, adipokines, and lipids were measured. Hepatic levels of adipokines, oxidant markers, and antioxidant markers were also determined. Insulin resistance was assessed by a glucose tolerance test. Polysaccharides of C. hypnaeoides were purified and their molecular weight was determined by high-performance seize exclusion chromatography. The anti-inflammatory effects of purified polysaccharides were evaluated in RAW264.7 cells. Results: Treatment of HF diet-induced obese mice with C. hypnaeoides for 13 weeks suppressed the increase in body weight and white adipose tissue weight. It also ameliorated insulin resistance, diabetes, hepatic steatosis, and hypercholesterolemia. The ingestion of an HF diet increased serum levels of malondialdehyde (MDA), tumor necrosis factor a (TNF-a), and monocyte chemoattractant protein-1 (MCP-1), while it decreased serum adiponectin levels. In the liver, an HF diet markedly increased the MDA, TNF-a, and interleukin-6 (IL-6) levels, while it decreased glutathione (GSH) and superoxide dismutase (SOD). These metabolic changes induced by HF diet feeding were ameliorated by dietary C. hypnaeoides. Purified polysaccharides and ethanol extract from C. hypnaeoides inhibited the lipopolysaccharide-induced overproduction of nitric oxide and TNF-a in macrophage RAW264.7 cells. Conclusions: The present results indicated that C. hypnaeoides was able to alleviate HF diet-induced metabolic disorders, including obesity, diabetes, hepatic steatosis, and hypercholesterolemia by attenuating inflammation and improving the antioxidant capacity in mice. Polysaccharides and polyphenols may be involved in these beneficial effects of C. hypnaeoides.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Amy C Burke ◽  
Dawn E Telford ◽  
Brian G Sutherland ◽  
Jane Y Edwards ◽  
Murray W Huff

Previously, we have shown that intervention by the addition of the citrus flavonoid naringenin to a chow diet enhances the reversal of diet-induced metabolic dysregulation, obesity, and atherosclerosis. However, the metabolic effects of naringenin in the absence of obesity and metabolic dysregulation are unknown. In the present study, we assessed the effect of naringenin supplementation to a chow diet on plasma lipids, adiposity, respiratory exchange ratio (RER), ambulatory activity and tissue lipolysis. For 8 weeks, Ldlr -/- mice were fed an isoflavone-free chow diet supplemented with or without 3% naringenin. Over 8 weeks, there was no difference in caloric intake between the two groups. Naringenin supplementation reduced plasma VLDL-cholesterol (C) (-46%; P <0.05), VLDL-triglycerides (-43%; P <0.05), and LDL-C (-27%; P <0.05) compared to mice consuming chow alone. Chow-fed mice maintained body weight, whereas mice fed chow with naringenin were ~1.4 g lighter ( P <0.05) with significantly reduced adiposity (-48%; P <0.05). Histological analysis of epididymal white adipose tissue showed naringenin supplementation reduced adipocyte size and number. Between 6 and 8 weeks of diet, mice were assessed in metabolic cages. Naringenin supplementation had no effect on food intake, ambulatory activity or energy expenditure during both the light and dark cycles. Consistently, naringenin-treated mice had significantly lower RER compared to mice fed chow alone (0.97 vs 0.99; P <0.05). This difference was driven by a significant suppression in RER during the light cycle (0.96 vs 1.00; P <0.05), but not the dark cycle (0.97 vs 0.98 N.S ), suggesting an enhanced starvation response. Triglyceride lipolysis was highest in white adipose tissue, followed by liver and muscle. Naringenin supplementation to chow increased the lipolytic rate in adipose, but not in muscle or liver, suggesting reduced adiposity was related to increased expression of ATGL or HSL. In conclusion, compared to chow alone, naringenin supplementation reduced plasma lipids and decreased body weight via increased adipose tissue lipolysis and suppressed RER, with no change in energy expenditure.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masayuki Sugimoto ◽  
Hidenori Arai ◽  
Yukinori Tamura ◽  
Toshinori Murayama ◽  
Koh Ono ◽  
...  

Mulberry leaf (ML) is commonly used to feed silkworms. Previous study showed that ML ameliorates atherosclerosis. However, its mechanism is not completely understood. Because dysregulated production of adipocytokines is involved in the development of the metabolic syndrome and cardiovascular disease, we examined the effect of ML on the production of adipocytokines and metabolic disorders related to the metabolic syndrome, and compared its effect with that of a PPARγ agonist, pioglitazone (Pio). By treating obese diabetic db/db mice with ML, Pio, and their combination, we investigated the mechanism by which they improve metabolic disorders. In this study, db/+m (lean control) and db/db mice were fed a standard diet with or without 3% (w/w) ML and/or 0.01% (w/w) Pio for 12 weeks from 9 weeks of age. At the end of the experiment we found that ML decreased plasma glucose and triglyceride by 32% and 30%, respectively. Interestingly, administration of ML in addition to Pio showed additive effects; further 40% and 30% reduction in glucose and triglyceride compared with Pio treatment, respectively. Moreover, administration of ML in addition to Pio suppressed the body weight increase by Pio treatment and reduced visceral/subcutaneous fat ratio by 20% compared with control db/db mice. Importantly, ML treatment increased expression of adiponectin in white adipose tissue (WAT) by 40%, which was only found in db/db mice, not in control db/+m mice. Combination of ML and Pio increased plasma adiponectin concentrations by 25% and its expression in WAT by 17% compared with Pio alone. In contrast, ML decreased expression of TNF-α and MCP-1 by 25% and 20%, respectively, and the addition of Pio resulted in a further decrease of these cytokines by about 45%. To study the mechanism, we examined the role of oxidative stress. ML decreased the amount of lipid peroxides by 43% and the expression of NADPH oxidase subunits in WAT, which was consistent with the results of TNF-α and MCP-1. Thus our results indicate that ML ameliorates adipocytokine dysregulation by inhibiting oxidative stress in WAT of obese mice, and that ML may have a potential for the treatment of the metabolic syndrome as well as reducing adverse effects of Pio.


2020 ◽  
Author(s):  
Natália C. Romeiro ◽  
Caroline M. Ferreira ◽  
Marcus F. Oliveira

AbstractWhite adipose tissue (WAT) is classically associated with energy storage in the form of triacylglycerol and is directly associated with metabolic disorders, including obesity. Mitochondria regulates cellular expenditure and are active in WAT. Although isolated mitochondria have been classically used to assess their functions, several artifacts can be introduced by this approach. Although methods to assess mitochondrial physiology in permeabilized WAT were proposed, important limitations that affect organelle function exist. Here, we established and validated a method for functional evaluation of mice mesenteric WAT (mWAT) mitochondria by using mechanical permeabilization in combination with lipid depletion and high-resolution respirometry. We observed that mild stirring of mWAT for 20 minutes at room temperature with 4% fatty acid-free albumin selectively permeabilized white adipocytes plasma membrane. In these conditions, mWAT mitochondria were intact and coupled, exhibiting succinate-induced respiratory rates that were sensitive to classical modulators of oxidative phosphorylation. Finally, the respiratory capacity of mWAT in females was significantly higher than in males, an observation that agrees with reported data using isolated mitochondria. The functional assessment of mWAT mitochondria through mild mechanical permeabilization, lipid depletion and high resolution respirometry proposed here will contribute to a better understanding of WAT biology in several pathophysiological contexts.


2017 ◽  
Vol 312 (5) ◽  
pp. R816-R820 ◽  
Author(s):  
Jaycob D. Warfel ◽  
Bolormaa Vandanmagsar ◽  
Olga S. Dubuisson ◽  
Sydney M. Hodgeson ◽  
Carrie M. Elks ◽  
...  

Carnitine palmitoyltransferase 1 (CPT1) is essential for the transport of long-chain fatty acids into the mitochondria for oxidation. Recently, it was reported that decreased CPT1b mRNA in adipose tissue was a contributing factor for obesity in rats. We therefore closely examined the expression level of Cpt1 in adipose tissue from mice, rats, and humans. Cpt1a is the predominate isoform in adipose tissue from all three species. Rat white adipose tissue has a moderate amount of Cpt1b mRNA, but it is very minor compared with Cpt1b expression in muscle. Total CPT1 activity in adipose tissue is also minor relative to other tissues. Both Cpt1a and Cpt1b mRNA were increased in gonadal fat but not inguinal fat by diet-induced obesity in mice. We also measured CPT1a and CPT1b expression in subcutaneous adipose tissue from human subjects with a wide range of body mass indexes (BMIs). Interestingly, CPT1a expression positively correlated with BMI ( R = 0.46), but there was no correlation with CPT1b ( R = 0.04). Our findings indicate that white adipose tissue fatty acid oxidation capacity is minor compared with that of metabolically active tissues. Furthermore, given the already low abundance of Cpt1b in white adipose tissue, it is unlikely that decreases in its expression can quantitatively decrease whole body energy expenditure enough to contribute to an obese phenotype.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7352 ◽  
Author(s):  
Xiaoyue Tang ◽  
Juan Li ◽  
Wei-gang Zhao ◽  
Haidan Sun ◽  
Zhengguang Guo ◽  
...  

White adipose tissue (WAT) plays a significant role in energy metabolism and the obesity epidemic. In this study, we sought to (1) profile the mouse WAT proteome with advanced 2DLC/MS/MS approach, (2) provide insight into WAT function based on protein functional annotation, and (3) predict potentially secreted proteins. A label-free 2DLC/MS/MS proteomic approach was used to identify the WAT proteome from female mouse WAT. A total of 6,039 proteins in WAT were identified, among which 5,160 were quantified (spanning a magnitude of 106) using an intensity-based absolute quantification algorithm, and 3,117 proteins were reported by proteomics technology for the first time in WAT. To comprehensively analyze the function of WAT, the proteins were divided into three quantiles based on abundance and we found that proteins of different abundance performed different functions. High-abundance proteins (the top 90%, 1,219 proteins) were involved in energy metabolism; middle-abundance proteins (90–99%, 2,273 proteins) were involved in the regulation of protein synthesis; and low-abundance proteins (99–100%, 1,668 proteins) were associated with lipid metabolism and WAT beiging. Furthermore, 800 proteins were predicted by SignalP4.0 to have signal peptides, 265 proteins had never been reported, and five have been reported as adipokines. The above results provide a large dataset of the normal mouse WAT proteome, which might be useful for WAT function research.


2021 ◽  
Vol 22 ◽  
Author(s):  
Wen Liu ◽  
Qing Zheng ◽  
Min Zhu ◽  
Xiaohong Liu ◽  
Jingping Liu ◽  
...  

: The N-3 polyunsaturated fatty acids (PUFAs) have a wide range of health benefits, including anti-inflammatory effects, improvements in lipids metabolism and promoting insulin secretion, as well as reduction of cancer risk. Numerous studies support that N-3 PUFAs have the potentials to improve many metabolic diseases, such as diabetes, nonalcoholic fatty liver disease and obesity, which are attributable to N-3 PUFAs mediated enhancement of insulin secretion by pancreatic β-cells and improvements in insulin sensitivity and metabolic disorders in peripheral insulin-sensitive tissues such as liver, muscles, and adipose tissue. In this review, we summarized the up-to-date clinical and basic studies on the regulatory effects and molecular mechanisms of N-3 PUFAs mediated benefits on pancreatic β-cells, adipose tissue, liver, and muscles in the context of glucose and/or lipid metabolic disorders. We also discussed the potential factors involved in the inconsistent results from different clinical researches of N-3 PUFAs.


2019 ◽  
Vol 97 (10) ◽  
pp. 916-923 ◽  
Author(s):  
Elaine Sarapio ◽  
Samir K. De Souza ◽  
Jorge F.A. Model ◽  
Marcia Trapp ◽  
Roselis S.M. Da Silva

Stanniocalcin-1 and -2 belong to a family of molecules that exhibit both paracrine and autocrine effects in mammalian cells. Human stanniocalcin-1 (hSTC-1) is expressed in a wide range of tissues, including white adipose tissue. In fed rats, hSTC-1 increases carbon flux from glucose to lipids in retroperitoneal white adipose tissue. Human stanniocalcin-2 (hSTC-2) is expressed in almost all tissues and regulates various biological processes. The aim of this work was to study the action of hSTC-1 and hSTC-2 in the lipid and glucose metabolism of epididymal white adipose tissue (eWAT) in rats in different nutritional states. This study shows for the first time an opposite effect of hSTC-1 and hSTC-2 on glyceride-glycerol generation from glucose in eWAT of fed rats. hSTC-1 stimulated the storage of triacylglycerol in eWAT in the postprandial period, increasing glucose uptake and glyceride-glycerol generation from 14C-glucose. hSTC-2 decreased triacylglycerol synthesis, reducing glyceride-glycerol generation from 14C-glucose, direct phosphorylation of glycerol, and fatty acid synthesis from 14C-glucose in eWAT of fed rats. However, both hormones increased glucose uptake in fed and fasting states. These findings provide evidence for a direct role of hSTC-1 and hSTC-2 in the regulation of lipid and glucose metabolism in eWAT of rats.


Sign in / Sign up

Export Citation Format

Share Document