scholarly journals Upregulation of the Cdc42 GTPase limits replicative lifespan in budding yeast

2021 ◽  
Author(s):  
Pil Jung Kang ◽  
Rachel Mullner ◽  
Haoyu Li ◽  
Derek Hansford ◽  
Han-Wei Shen ◽  
...  

ABSTRACTCell polarity underlies various cellular processes, including cell proliferation and asymmetric cell division. Cdc42, a conserved Rho GTPase, plays a central role in polarity establishment in yeast and animals. While cell polarity is critical for the asymmetric division of budding yeast, whether Cdc42 impacts lifespan is not clear. Here, we show by live-cell imaging that the active Cdc42 level is sporadically elevated in wild-type cells during repeated cell divisions but rarely in the long-lived bud8 deletion mutant. Remarkably, mild overexpression of Cdc42 causes premature aging with frequent symmetric cell divisions despite no harmful effects on young cells. Furthermore, deletion of BUD8 rescues the short lifespan of an rga1 mutant, which lacks a Cdc42 GTPase activating protein, and Bud8 competes with Rga1 for localization to cytokinesis remnants. Collectively, our findings suggest that upregulation of Cdc42 is a proximal cause of cell death in old yeast cells and that Bud8 counteracts Rga1 in modulating the Cdc42 activity to limit replicative lifespan.

Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 631-643 ◽  
Author(s):  
V. Orgogozo ◽  
F. Schweisguth ◽  
Y. Bellaiche

The stereotyped pattern of the Drosophila embryonic peripheral nervous system (PNS) makes it an ideal system to use to identify mutations affecting cell polarity during asymmetric cell division. However, the characterisation of such mutations requires a detailed description of the polarity of the asymmetric divisions in the sensory organ lineages. We describe the pattern of cell divisions generating the vp1-vp4a mono-innervated external sense (es) organs. Each sensory organ precursor (SOP) cell follows a series of four asymmetric cell divisions that generate the four es organs cells (the socket, shaft, sheath cells and the es neurone) together with one multidendritic (md) neurone. This lineage is distinct from any of the previously proposed es lineages. Strikingly, the stereotyped pattern of cell divisions in this lineage is identical to those described for the embryonic chordotonal organ lineage and for the adult thoracic bristle lineage. Our analysis reveals that the vp2-vp4a SOP cells divide with a planar polarity to generate a dorsal pIIa cell and a ventral pIIb cell. The pIIb cell next divides with an apical-basal polarity to generate a basal daughter cell that differentiates as an md neurone. We found that Inscuteable specifically accumulated at the apical pole of the dividing pIIb cell and regulated the polarity of the pIIb division. This study establishes for the first time the function of Inscuteable in the PNS, and provides the basis for studying the mechanisms controlling planar and apical-basal cell polarities in the embryonic sensory organ lineages.


2019 ◽  
Author(s):  
Matthew H. Rowe ◽  
Juan Dong ◽  
Annika K. Weimer ◽  
Dominique C. Bergmann

SUMMARYGenerating cell polarity in anticipation of asymmetric cell division is required in many developmental contexts across a diverse range of species. Physical and genetic diversity among major multicellular taxa, however, demand different molecular solutions to this problem. The Arabidopsis stomatal lineage displays asymmetric, stem cell-like and oriented cell divisions, which require the activity of the polarly localized protein, BASL. Here we identify the plant-specific BREVIS RADIX (BRX) family as localization and activity partners of BASL. We show that members of the BRX family are polarly localized to peripheral domains in stomatal lineage cells and that their collective activity is required for asymmetric cell divisions. We further demonstrate a mechanism for these behaviors by uncovering mutual, yet unequal dependencies of BASL and the BRX family for each other’s localization and segregation at the periphery of stomatal lineage cells.


Author(s):  
Melanie Kovacs ◽  
Florian Geltinger ◽  
Thomas Verwanger ◽  
Richard Weiss ◽  
Klaus Richter ◽  
...  

Besides their role as a storage for neutral lipids and sterols, there is increasing evidence that lipid droplets (LDs) are involved in cellular detoxification. LDs are in close contact to a broad variety of organelles where protein- and lipid exchange is mediated. Mitochondria as a main driver of the aging process produce reactive oxygen species (ROS), which damage several cellular components. LDs as highly dynamic organelles mediate a potent detoxification mechanism by taking up toxic lipids and proteins. A stimulation of LDs induced by the simultaneously overexpression of Lro1p and Dga1p (both encoding acyltransferases) prolongs the chronological as well as the replicative lifespan of yeast cells. The increased number of LDs reduces mitochondrial fragmentation as well as mitochondrial ROS production, both phenotypes that are signs of aging. Strains with an altered LD content or morphology as in the sei1∆ or lro1∆ mutant lead to a reduced replicative lifespan. In a yeast strain defective for the LON protease Pim1p, which showed an enhanced ROS production, increased doubling time and an altered mitochondrial morphology, a LRO1 overexpression resulted in a partially reversion of this “premature aging” phenotype.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


Genetics ◽  
2004 ◽  
Vol 166 (4) ◽  
pp. 1641-1649
Author(s):  
Laura Maringele ◽  
David Lydall

Abstract Telomerase-defective budding yeast cells escape senescence by using homologous recombination to amplify telomeric or subtelomeric structures. Similarly, human cells that enter senescence can use homologous recombination for telomere maintenance, when telomerase cannot be activated. Although recombination proteins required to generate telomerase-independent survivors have been intensively studied, little is known about the nucleases that generate the substrates for recombination. Here we demonstrate that the Exo1 exonuclease is an initiator of the recombination process that allows cells to escape senescence and become immortal in the absence of telomerase. We show that EXO1 is important for generating type I survivors in yku70Δ mre11Δ cells and type II survivors in tlc1Δ cells. Moreover, in tlc1Δ cells, EXO1 seems to contribute to the senescence process itself.


2020 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Somanon Bhattacharya ◽  
Tejas Bouklas ◽  
Bettina C. Fries

Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.


1989 ◽  
Vol 35 (12) ◽  
pp. 1081-1086 ◽  
Author(s):  
Byron F. Johnson ◽  
L. C. Sowden ◽  
Teena Walker ◽  
Bong Y. Yoo ◽  
Gode B. Calleja

The surfaces of flocculent and nonflocculent yeast cells have been examined by electron microscopy. Nonextractive preparative procedures for scanning electron microscopy allow comparison in which sharp or softened images of surface details (scars, etc.) are the criteria for relative abundance of flocculum material. Asexually flocculent budding-yeast cells cannot be distinguished from nonflocculent budding-yeast cells in scanning electron micrographs because the scar details of both are well resolved, being hard and sharp. On the other hand, flocculent fission-yeast cells are readily distinguished from nonflocculent cells because fission scars are mostly soft or obscured on flocculent cells, but sharp on nonflocculent cells. Sexually and asexually flocculent fission-yeast cells cannot be distinguished from one another as both are heavily clad in "mucilaginous" or "hairy" coverings. Examination of lightly extracted and heavily extracted flocculent fission-yeast cells by transmission electron microscopy provides micrographs consistent with the scanning electron micrographs.Key words: flocculation, budding yeast, fission yeast, scanning, transmission.


2003 ◽  
Vol 14 (12) ◽  
pp. 4958-4970 ◽  
Author(s):  
Keith G. Kozminski ◽  
Laure Beven ◽  
Elizabeth Angerman ◽  
Amy Hin Yan Tong ◽  
Charles Boone ◽  
...  

Polarized cell growth requires the coupling of a defined spatial site on the cell cortex to the apparatus that directs the establishment of cell polarity. In the budding yeast Saccharomyces cerevisiae, the Ras-family GTPase Rsr1p/Bud1p and its regulators select the proper site for bud emergence on the cell cortex. The Rho-family GTPase Cdc42p and its associated proteins then establish an axis of polarized growth by triggering an asymmetric organization of the actin cytoskeleton and secretory apparatus at the selected bud site. We explored whether a direct linkage exists between the Rsr1p/Bud1p and Cdc42p GTPases. Here we show specific genetic interactions between RSR1/BUD1 and particular cdc42 mutants defective in polarity establishment. We also show that Cdc42p coimmunoprecipitated with Rsr1p/Bud1p from yeast extracts. In vitro studies indicated a direct interaction between Rsr1p/Bud1p and Cdc42p, which was enhanced by Cdc24p, a guanine nucleotide exchange factor for Cdc42p. Our findings suggest that Cdc42p interacts directly with Rsr1p/Bud1p in vivo, providing a novel mechanism by which direct contact between a Ras-family GTPase and a Rho-family GTPase links the selection of a growth site to polarity establishment.


Sign in / Sign up

Export Citation Format

Share Document