scholarly journals Dicer-to-Argonaute switch controls biogenesis of oncogenic miRNA

2021 ◽  
Author(s):  
Francesca M Buffa ◽  
Laura Winchester ◽  
Linda van Bijsterveldt ◽  
Andrew Dhawan

miRNAs are post-transcriptional regulators of gene expression, controlling biological processes from development to pathogenesis. We asked whether the reshaped functional miRNA landscape in cancers is driven by altered transcription of its precursors, or altered biogenesis and maturation of miRNAs. Integrated analysis of genomic and transcriptomic data in 9,111 samples across 10 cancer types and healthy tissues revealed a recurrent genomic switch from DICER-dependent to non-canonical Argonaute-mediated, DICER-independent, miRNA biogenesis. Experimental validation in AGO2-amplified clinical samples and cancer cell lines confirmed that canonical miRNAs can undergo maturation in a DICER-independent manner, and that elevated Argonaute levels promote selective maturation of the oncogenic miR-106b/25 cluster as shown by the altered ratio of mature miRNA to immature pri-miRNA levels. The preferential maturation of these oncogenic miRNAs, whose processing bypasses DICER1, promotes cancer progression and predicts poor prognosis. This highlights the evolution of non-canonical AGO2-dependent oncomiR processing as a novel driver pathway in cancer.

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Qin ◽  
Dongning Huang ◽  
Jian Huang ◽  
Fuhui Qin ◽  
Haixin Huang

This bioinformatics study aimed to characterize and certify crucial anti-cancer targets, functional processes, and molecular mechanisms of Pachyman in treating hepatocellular carcinoma (HCC) by using pharmacology network and molecular docking analyses, by experimental validation. The crucial anti-HCC targets of Pachyman, including ALB, VEGFA, TNF, CASP3, SRC, EGF, CXCR4, STAT3, HRAS, HSP90AA1, MMP9, BCL2L1, FGF2, and PTPRC, were identified. In addition, the correlative networks of all crucial biotargets of Pachyman in treating HCC were created accordingly. Functionally, these crucial genes were correlated using angiogenesis and neoplastic metastasis of HCC. Interestingly, the molecular docking findings indicated that ALB and VEGFA in HCC might be potent pharmacological targets of Pachyman. In experimental validation, the clinical samples of HCC showed reduced ALB protein expression and increased VEGFA protein level. Following Pachyman treatments in vitro, the intracellular level of ALB protein was elevated, whereas the cellular content of VEGFA protein was downregulated. Taken together, current bioinformatics findings based on pharmacology network and molecular docking analyses elucidate the detailed molecular targets and signaling mechanisms of Pachyman in treating HCC. Interestingly, validated biotargets of ALB and VEGFA may be main potential biomarkers for detecting HCC medically.


Author(s):  
Hannah L. M. Spencer ◽  
Steven D. Shnyder ◽  
Paul M. Loadman ◽  
Robert A. Falconer

The dysregulation of Membrane - type 1 matrix metalloproteinase (MT1-MMP) has been extensively studied in numerous cancer types, and plays key roles in angiogenesis, cancer progression, and metastasis. MT1-MMP is a predictor of poor prognosis in osteosarcoma (OS), yet the molecular mechanisms of disease progression are unclear. This review provides a summary of the literature relating to the gene and protein expression of MT1-MMP (MMP-14) in OS clinical samples, evaluates the expression in cell lines and experimental models, and analyses its potential role in the progression and metastasis of OS. In addition, the therapeutic potential of MT1-MMP as a drug target has been assessed. Due to the biological complexity of MMPs, inhibition has proven to be challenging. However, exploiting the expression and proteolytic capacity of MT1-MMP could open new avenues in the search for novel, safer and selective drugs for use in OS.


2018 ◽  
Author(s):  
Samuel C. Lee ◽  
Alistair Quinn ◽  
Thin Nguyen ◽  
Svetha Venkatesh ◽  
Thomas P. Quinn

AbstractIn the progression of cancer, cells acquire genetic mutations that cause uncontrolled growth. Over time, the primary tumour may undergo additional mutations that allow for the cancerous cells to spread throughout the body as metastases. Since metastatic development typically results in markedly worse patient outcomes, research into the identity and function of metastasisassociated biomarkers could eventually translate into clinical diagnostics or novel therapeutics. Although the general processes underpinning metastatic progression are understood, no consistent nor clear cross-cancer biomarker profile has yet emerged. However, the literature suggests that some microRNAs (miRNAs) may play an important role in the metastatic progression of several cancer types. Using a subset of The Cancer Genome Atlas (TCGA) data, we performed an integrated analysis of mRNA and miRNA expression with paired metastatic and primary tumour samples to interrogate how the miRNA-mRNA regulatory axis influences metastatic progression. From this, we successfully built mRNAand miRNA-specific classifiers that can discriminate pairs of metastatic and primary samples across 11 cancer types. In addition, we identified a number of miRNAs whose metastasis-associated dysregulation could predict mRNA metastasis-associated dysregulation. Among the most predictive miRNAs, we found several previously implicated in cancer progression, including miR-301b, miR-1296, and miR-423. Taken together, our results suggest that cross-cancer metastatic samples have unique biomarker signatures when compared with paired primary tumours, and that these miRNA biomarkers can be used to predict both metastatic status and mRNA expression.


Author(s):  
Bashdar Mahmud Hussen ◽  
Tahereh Azimi ◽  
Atefe Abak ◽  
Hazha Jamal Hidayat ◽  
Mohammad Taheri ◽  
...  

Being located in a gene desert region on 9q21.11-q21.12, BRAF-activated non-protein coding RNA (BANCR) is an lncRNA with 693 bp length. It has been discovered in 2012 in a research aimed at assessment of gene expression in the melanocytes in association with BRAF mutation. Increasing numbers of studies have determined its importance in the tumorigenesis through affecting cell proliferation, migration, invasion, apoptosis, and epithelial to mesenchymal transition. BANCR exerts its effects via modulating some tumor-related signaling pathways particularly MAPK and other regulatory mechanisms such as sponging miRNAs. BANCR has been up-regulated in endometrial, gastric, breast, melanoma, and retinoblastoma. Conversely, it has been down-regulated in some other cancers such as those originated from lung, bladder, and renal tissues. In some cancer types such as colorectal cancer, hepatocellular carcinoma and papillary thyroid carcinoma, there is no agreement about BANCR expression, necessitating the importance of additional functional studies in these tissues. In the present manuscript, we review the investigations related to BANCR expression changes in cancerous cell lines, clinical samples, and animal models of cancer. We also discuss the outcome of its deregulation in cancer progression, prognosis, and the underlying mechanisms of these observations.


2020 ◽  
Author(s):  
Gulden Olgun ◽  
Oznur Tastan

AbstractThe dysregulation of long non-coding RNAs’ (lncRNAs) expressions has been implicated in cancer. Since most of the lncRNAs’ are not functionally characterized well, investigating the set of perturbed lncRNAs are is challenging. Existing methods that inspect lncRNAs functionally rely on the co-expressed coding genes, which are far better characterized functionally. LncRNAs can be known to act as transcriptional regulators; they may activate or repress the neighborhood’s coding genes on the genome. Based on this, in this work, we aim to analyze the deregulated lncRNAs in cancer by taking into account their ability to regulate nearby loci on the genome. We perform functional analysis on differentially expressed lncRNAs for 28 different cancers considering their adjacent coding genes. We identify that some deregulated lncRNAs are cancer-specific, but a substantial number of lncRNAs are shared across cancers. Next, we assess the similarities of the cancer types based on the functional enrichment of the deregulated lncRNA sets. We find some cancers are very similar in the functions and biological processes related to the deregulated lncRNAs. We observe that some of the cancers for which we find similarity can be linked through primary, metastatic site relations. We investigate the similarity of enriched functional terms for the deregulated lncRNAs and the mRNAs. We further assess the enriched functions’ similarity to the functions and processes that the known cancer driver genes take place. We believe that our methodology help to understand the impact of the lncRNAs in cancer functionally.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Xuefei Zhang ◽  
Lingling Wang ◽  
Haixia Li ◽  
Lei Zhang ◽  
Xiulan Zheng ◽  
...  

Abstract Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.


Author(s):  
Angeles C. Tecalco–Cruz

Abstract:: Human interferon–stimulated gene 15 (ISG15) is a 15–kDa ubiquitin–like protein that can be detected as either free ISG15 or covalently associated with its target proteins through a process termed ISGylation. Interestingly, extracellular free ISG15 has been proposed as a cytokine–like protein, whereas ISGylation is a posttranslational modification. ISG15 is a small protein with implications in some biological processes and pathologies that include cancer. This review highlights the findings of both free ISG15 and protein ISGylation involved in several molecular pathways, emerging as central elements in some cancer types.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 77-96
Author(s):  
T. Jeethy Ram ◽  
Asha Lekshmi ◽  
Thara Somanathan ◽  
K. Sujathan

Cancer metastasis and therapy resistance are the foremost hurdles in oncology at the moment. This review aims to pinpoint the functional aspects of a unique multifaceted glycosylated molecule in both intracellular and extracellular compartments of a cell namely galectin-3 along with its metastatic potential in different types of cancer. All materials reviewed here were collected through the search engines PubMed, Scopus, and Google scholar. Among the 15 galectins identified, the chimeric gal-3 plays an indispensable role in the differentiation, transformation, and multi-step process of tumor metastasis. It has been implicated in the molecular mechanisms that allow the cancer cells to survive in the intravascular milieu and promote tumor cell extravasation, ultimately leading to metastasis. Gal-3 has also been found to have a pivotal role in immune surveillance and pro-angiogenesis and several studies have pointed out the importance of gal-3 in establishing a resistant phenotype, particularly through the epithelial-mesenchymal transition process. Additionally, some recent findings suggest the use of gal-3 inhibitors in overcoming therapeutic resistance. All these reports suggest that the deregulation of these specific lectins at the cellular level could inhibit cancer progression and metastasis. A more systematic study of glycosylation in clinical samples along with the development of selective gal-3 antagonists inhibiting the activity of these molecules at the cellular level offers an innovative strategy for primary cancer prevention.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1448
Author(s):  
Raquel Herranz ◽  
Julia Oto ◽  
Emma Plana ◽  
Álvaro Fernández-Pardo ◽  
Fernando Cana ◽  
...  

Bladder cancer (BC) is among the most frequent cancer types in the world and is the most lethal urological malignancy. Presently, diagnostic and follow-up methods for BC are expensive and invasive. Thus, the identification of novel predictive biomarkers for diagnosis, progression, and prognosis of BC is of paramount importance. To date, several studies have evidenced that cell-free DNA (cfDNA) found in liquid biopsies such as blood and urine may play a role in the particular scenario of urologic tumors, and its analysis may improve BC diagnosis report about cancer progression or even evaluate the effectiveness of a specific treatment or anticipate whether a treatment would be useful for a specific patient depending on the tumor characteristics. In the present review, we have summarized the up-to-date studies evaluating the value of cfDNA as potential diagnostic, prognostic, or monitoring biomarker for BC in several biofluids.


Author(s):  
Anika Tabassum ◽  
Md. Nazmus Samdani ◽  
Tarak Chandra Dhali ◽  
Rahat Alam ◽  
Foysal Ahammad ◽  
...  

Abstract Transporter associated with antigen processing 1 (TAP1) is a transporter protein that represent tumor antigen in the MHC I or HLA complex. Any defect in the TAP1 gene resulting in inadequate tumor tracking. TAP1 influences multidrug resistance (MDR) in human cancer cell lines and hinders the treatment during chemotherapeutic. The association of TAP1 in cancer progression remains mostly unknown and further study of the gene in relation with cancer need to conduct. Thus, the study has designed to analyze the association between the TAP1 with cancer by computationally. The expression pattern of the gene has determined by using ONCOMINE, GENT2, and GEPIA2 online platforms. The protein level of TAP1 was examined by the help of Human Protein Atlas. Samples with different clinical outcomes were investigated to evaluate the expression and promoter methylation in cancer vs. normal tissues by using UALCAN server. The copy number alteration, mutation frequency, and expression level of the gene in different cancer were analyzed by using cBioPortal server. The PrognoScan and KM plotter platforms were used to perform the survival analysis and represented graphically. Additionally, pathway and gene ontology (GO) features correlated to the TAP1 gene were analyzed and presented by bar charts. After arranging the data in a single panel like correlating expression to prognosis, mutational and alterations characteristic, and pathways analysis, we observed some interesting insights that emphasized the importance of the gene in cancer progression. The study found the relationship between the TAP1 expression pattern and prognosis in different cancer tissues and shows how TAP1 affects the clinical characteristics. The analytical data presented in the study is vital to learn about the effect of TAP1 in tumor tissue, where previously studies showing contradicting expression of TAP1 in cancer tissue. The analyzed data can also be utilized further to evade the threats against chemotherapy. Overall, the study provided a new aspect to consider the role of TAP1 gene in cancer progression and survival status. Key messages • This study demonstrated, for the first time, a correlation between the TAP1 gene and tumor progression. • An upregulation of TAP1 mRNA was demonstrated in various cancer types. • This study reported a significant negative correlation for TAP1 gene expression and the survival rate in different cancer types.


Sign in / Sign up

Export Citation Format

Share Document