scholarly journals OGT controls mammalian cell viability by regulating the proteasome/mTOR/ mitochondrial axis

2021 ◽  
Author(s):  
Xiang Li ◽  
Xiaojing Yue ◽  
Hugo Sepulveda ◽  
Rajan A. Burt ◽  
David A. Scott ◽  
...  

AbstractO-GlcNAc transferase (OGT) is an essential X-chromosome-encoded enzyme that catalyzes the addition of N-acetylglucosamine (GlcNAc) to the hydroxyl groups of serine and threonine residues on many nuclear and cytosolic proteins. This posttranslational modification is reversible and is actively removed by the O-GlcNAc’ase OGA. It was shown more than two decades ago that OGT is essential for mammalian cell viability, but the underlying mechanisms are still enigmatic. Given the close association between OGT and human diseases, such as cancer, diabetes and cardiovascular disease, identification of the mechanisms by which OGT controls cell viability will facilitate the development of therapeutic strategies to manipulate OGT activity. Here, we employ a genome-wide CRISPR-Cas9 viability screen in mouse embryonic stem cells (mESCs) with inducible Ogt deletion to show that the block in cell viability induced by Ogt-deficiency stems from a deleterious increase in mitochondrial oxidative phosphorylation (OXPHOS). Mechanistically, we demonstrate that OGT safeguards mTOR (mechanistic target of rapamycin) activity to maintain mitochondrial fitness through modulation of proteasome activity and intracellular amino acid homeostasis. In the absence of OGT, increased proteasome activity results in increased steady-state amino acid levels, which in turn promote mTOR translocation and activation and increased oxidative phosphorylation. This mechanism also operates in CD8+ T cells, indicating its generality across mammalian cell types. Genome-wide proteomic and phosphoproteomic analyses show extensive changes in global signaling and confirm our finding of mTOR hyperactivation in OGT-deficient cells. In sum, our study highlights a novel function for OGT in regulating the proteasome/ mTOR/ mitochondrial axis in a manner that maintains homeostasis of intracellular amino acid levels, mitochondrial fitness and cell viability. Since many of the proteins involved in proteasome, mTOR and mitochondrial activity are aberrantly expressed in cancer, and since inhibitors for proteasome and mTOR have been used in cancer therapy, manipulating OGT activity may have therapeutic potential in diseases in which this signaling axis is impaired.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


2021 ◽  
Author(s):  
Taeko Shibaya ◽  
Chika Kuroda ◽  
Hisano Tsuruoka ◽  
Chiharu Minami ◽  
Akiko Obara ◽  
...  

Abstract Carrot is a major source of provitamin A in a human diet. Two of the most important traits for carrot breeding are carotenoid contents and root color. To examine genomic regions related to these traits and develop DNA markers for carrot breeding, we performed a genome-wide association study (GWAS) using genome-wide single-nucleotide polymorphisms (SNPs) in two F2 populations, both derived from crosses of orange root carrots bred by a Japanese seed company. The GWAS revealed 21 significant associations, and the physical position of some associations suggested two possible candidate genes. An Orange (Or) gene was a possible candidate for visual color evaluation and the α- and β-carotene contents. Sanger sequencing detected a new allele of Or with an SNP which caused a non-synonymous amino acid substitution. Genotypes of this SNP corresponded to the visual evaluation of root color in another breeding line. A chromoplast-specific lycopene β-cyclase (CYC-B) gene was a possible candidate for the β/α carotene ratio. On CYC-B, five amino acid substitutions were detected between parental plants of the F2 population. The detected associations and SNPs on the possible candidate genes will contribute to carrot breeding and the understanding of carotenoid biosynthesis and accumulation in orange carrots.


2021 ◽  
Vol 118 (11) ◽  
pp. e2004199118
Author(s):  
Marina Penova ◽  
Shuji Kawaguchi ◽  
Jun-ichirou Yasunaga ◽  
Takahisa Kawaguchi ◽  
Tomoo Sato ◽  
...  

HTLV-1–associated myelopathy (HAM/TSP) is a chronic and progressive inflammatory disease of the central nervous system. The aim of our study was to identify genetic determinants related to the onset of HAM/TSP in the Japanese population. We conducted a genome-wide association study comprising 753 HAM/TSP patients and 899 asymptomatic HTLV-1 carriers. We also performed comprehensive genotyping of HLA-A, -B, -C, -DPB1, -DQB1, and -DRB1 genes using next-generation sequencing technology for 651 HAM/TSP patients and 804 carriers. A strong association was observed in HLA class I (P = 1.54 × 10−9) and class II (P = 1.21 × 10−8) loci with HAM/TSP. Association analysis using HLA genotyping results showed that HLA-C*07:02 (P = 2.61 × 10−5), HLA-B*07:02 (P = 4.97 × 10−10), HLA-DRB1*01:01 (P = 1.15 × 10−9) and HLA-DQB1*05:01 (P = 2.30 × 10−9) were associated with disease risk, while HLA-B*40:06 (P = 3.03 × 10−5), HLA-DRB1*15:01 (P = 1.06 × 10−5) and HLA-DQB1*06:02 (P = 1.78 × 10−6) worked protectively. Logistic regression analysis identified amino acid position 7 in the G-BETA domain of HLA-DRB1 as strongly associated with HAM/TSP (P = 9.52 × 10−10); individuals homozygous for leucine had an associated increased risk of HAM/TSP (odds ratio, 9.57), and proline was protective (odds ratio, 0.65). Both associations were independent of the known risk associated with proviral load. DRB1-GB-7-Leu was not significantly associated with proviral load. We have identified DRB1-GB-7-Leu as a genetic risk factor for HAM/TSP development independent of proviral load. This suggests that the amino acid residue may serve as a specific marker to identify the risk of HAM/TSP even without knowledge of proviral load. In light of its allele frequency worldwide, this biomarker will likely prove useful in HTLV-1 endemic areas across the globe.


2016 ◽  
Vol 113 (46) ◽  
pp. 13109-13113 ◽  
Author(s):  
Igor B. Rogozin ◽  
Frida Belinky ◽  
Vladimir Pavlenko ◽  
Svetlana A. Shabalina ◽  
David M. Kristensen ◽  
...  

Serine is the only amino acid that is encoded by two disjoint codon sets so that a tandem substitution of two nucleotides is required to switch between the two sets. Previously published evidence suggests that, for the most evolutionarily conserved serines, the codon set switch occurs by simultaneous substitution of two nucleotides. Here we report a genome-wide reconstruction of the evolution of serine codons in triplets of closely related species from diverse prokaryotes and eukaryotes. The results indicate that the great majority of codon set switches proceed by two consecutive nucleotide substitutions, via a threonine or cysteine intermediate, and are driven by selection. These findings imply a strong pressure of purifying selection in protein evolution, which in the case of serine codon set switches occurs via an initial deleterious substitution quickly followed by a second, compensatory substitution. The result is frequent reversal of amino acid replacements and, at short evolutionary distances, pervasive homoplasy.


Author(s):  
Yiqun Chen ◽  
Xiao Liu ◽  
Ji Young Anderson ◽  
Harnish Mukesh Naik ◽  
Venkata Gayatri Dhara ◽  
...  

2016 ◽  
Vol 24 (6) ◽  
pp. 875-885 ◽  
Author(s):  
Jason D. Arroyo ◽  
Alexis A. Jourdain ◽  
Sarah E. Calvo ◽  
Carmine A. Ballarano ◽  
John G. Doench ◽  
...  

1985 ◽  
Vol 150 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Isaac Myara ◽  
Christiane Charpentier ◽  
Marthe Gautier ◽  
Alain Lemonnier

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Wang ◽  
Jincai Hou ◽  
Hui Zhao ◽  
Jianxun Liu

Ischemia-activated microglia are like a double-edged sword, characterized by both neurotoxic and neuroprotective effects. The aim of this study was to reveal the synergistic effect of geniposide and ginsenoside Rg1 based on tumor necrosis factor- (TNF-)αand transforming growth factor- (TGF-)β1 balance of microglia. BV2 microglial cells were divided into 5 groups: control, model (oxygen-glucose deprivation (OGD)), geniposide-treated, ginsenoside-Rg1-treated, and combination-treated. A series of assays were used to detect on (i) cell viability; (ii) NO content; (iii) expression (content) of TNF-αand TGF-β1; and (iv) gene expression profiles. The results showed that integrated use of geniposide and ginsenoside Rg1 significantly inhibited NO level and protected cell viability, improved the content and expression of TGF-β1, and reduced the content and expression of TNF-α. Separated use of geniposide or ginsenoside Rg1 showed different effects at different emphases. Next-generation sequencing showed that Fcγ-receptor-mediated phagocytosis pathway played a key regulatory role in the balance of TNF-αand TGF-β1 when cotreated with geniposide and ginsenoside Rg1. These findings suggest that synergistic drug combination of geniposide and ginsenoside Rg1 in the treatment of stroke is a feasible avenue for the application.


2021 ◽  
Author(s):  
Guillaume Devailly ◽  
Anagha Joshi

Advances in sequencing technologies have enabled exploration of epigenetic and transcription profiles at a genome-wide level. Epigenetic and transcriptional landscape is now available across hundreds of mammalian cell and tissue...


Sign in / Sign up

Export Citation Format

Share Document