scholarly journals Intact double stranded RNA is mobile and triggers RNAi against viral and fungal plant pathogens

2021 ◽  
Author(s):  
Christopher A Brosnan ◽  
Anne Sawyer ◽  
Filipe Fenselau Felippes ◽  
Bernard J Carroll ◽  
Peter M Waterhouse ◽  
...  

Topical application of double-stranded RNA (dsRNA) as RNA interference(RNAi) based biopesticides represents a sustainable alternative to traditional transgenic, breeding-based or chemical crop protection strategies. A key feature of RNAi is its ability to act non-cell autonomously, a process that plays a critical role in plant protection. However, the uptake of dsRNA upon topical application, and its ability to move and act non-cell autonomously remains debated and largely unexplored. Here we show that when applied to a leaf, unprocessed full-length dsRNA enters the vasculature and rapidly moves to multiple distal below ground, vegetative and reproductive tissue types in several model plant and crop hosts. Intact unprocessed dsRNA was detected in the apoplast of leaves, roots and flowers after leaf application and maintained in subsequent new growth. Furthermore, we show mobile dsRNA is functional against root infecting fungal and foliar viral pathogens. Our demonstration of the uptake and maintained movement of intact and functional dsRNA stands to add significant benefit to the emerging field of RNAi-based plant protection.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


Author(s):  
Deepti Malviya ◽  
Pramod Kumar Sahu ◽  
Udai B. Singh ◽  
Surinder Paul ◽  
Amrita Gupta ◽  
...  

Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.


2003 ◽  
Vol 2 (6) ◽  
pp. 1376-1385 ◽  
Author(s):  
Kyoung Su Kim ◽  
Howard S. Judelson

ABSTRACT The oomycete genus Phytophthora includes many of the world's most destructive plant pathogens, which are generally disseminated by asexual sporangia. To identify factors relevant to the biology of these propagules, genes induced in sporangia of the potato late blight pathogen Phytophthora infestans were isolated using cDNA macroarrays. Of ∼1,900 genes known to be expressed in sporangia, 61 were up-regulated >5-fold in sporangia versus hyphae based on the arrays, including 17 that were induced> 100-fold. A subset were also activated by starvation and in a nonsporulating mutant. mRNAs of some genes declined in abundance after germination, while others persisted through the germinated zoospore cyst stage. Functions were predicted for about three-quarters of the genes, including potential regulators (protein kinases and phosphatases, transcription factors, and G-protein subunits), transporters, and metabolic enzymes. Predominant among the last were several dehydrogenases, especially a highly expressed sorbitol dehydrogenase that accounted for 3% of the mRNA. Sorbitol dehydrogenase activity also rose during sporulation and several stress treatments, paralleling the expression of the gene. Another interesting metabolic enzyme resembled creatine kinases, which previously were reported only in animals and trypanosomes. These results provide insight into the transcriptional and cellular processes occurring in sporangia and identify potential targets for crop protection strategies.


2014 ◽  
Vol 6 (2) ◽  
pp. 451-456 ◽  
Author(s):  
K. K. Sharma ◽  
U. S. Singh

The genus Trichoderma contains species that are of a great economic importance due to their ability to act as biological control agents against a large variety of fungal plant pathogens. In the present investigation thirty isolates of the Trichoderma sp. were obtained from the rhizosphere soils of different plants at different locations at Nainital, Almora, Udham Singh Nagar, Derhadun, Haridwar and Tehri Garhwal districts of Uttarakhand (India). The isolates were characterized on the basis of their cultural and morphological characteristics. The cultural characteristics included linear growth, colony colour, pigmentation and growth pattern. Morphological characteristics studied were structure, shape and arrangement of conidiophores, phialides and conidia. Out of thirty isolates, 6 isolates namely PB10, PB13, PB23, PB26, PB27 and PB28 were identified as T. virens and remaining 24 isolates as T. harzianum.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 897 ◽  
Author(s):  
Fábio C. Coelho ◽  
Rosanna Squitti ◽  
Mariacarla Ventriglia ◽  
Giselle Cerchiaro ◽  
João P. Daher ◽  
...  

Copper is an essential nutrient for plants, animals, and humans because it is an indispensable component of several essential proteins and either lack or excess are harmful to human health. Recent studies revealed that the breakdown of the regulation of copper homeostasis could be associated with Alzheimer’s disease (AD), the most common form of dementia. Copper accumulation occurs in human aging and is thought to increase the risk of AD for individuals with a susceptibility to copper exposure. This review reports that one of the leading causes of copper accumulation in the environment and the human food chain is its use in agriculture as a plant protection product against numerous diseases, especially in organic production. In the past two decades, some countries and the EU have invested in research to reduce the reliance on copper. However, no single alternative able to replace copper has been identified. We suggest that agroecological approaches are urgently needed to design crop protection strategies based on the complementary actions of the wide variety of crop protection tools for disease control.


1998 ◽  
Vol 11 (3) ◽  
pp. 218-227 ◽  
Author(s):  
Laura Cavallarin ◽  
David Andreu ◽  
Blanca San Segundo

Cecropins are naturally occurring peptides that play an important role in the immune response of insects. Cecropin A-derived and cecropin A-melittin hybrid peptides, all smaller than the natural compound cecropin A, were synthesized and tested for their ability to inhibit growth of several agronomically important fungal pathogens. We found that an 11-amino-acid sequence, corresponding to the N-terminal amphipathic α-helix domain of cecropin A, exhibited antifungal activity. Differences in susceptibility of the various pathogens were observed, Phytophthora infestans being particularly sensitive to the shortened cecropin A peptides (IC50 = 2 × 10−6 M). Biotoxicity of the shortest cecropin A-derived peptide was variously affected by the presence of proteins extracted from leaves of tobacco and tomato plants, either total extracts or intercellular fluids (ICFs). Overall, there was a greater tolerance to tomato protein extracts than to tobacco extracts. These findings suggest that tobacco should not be used as a model for testing the possible protective effects of transgenically expressed, cecropin-based genes. The feasibility of tailoring cecropin A genes to enhance crop protection in particular plant/fungus combinations is discussed.


2017 ◽  
Vol 18 (4) ◽  
pp. 221-229 ◽  
Author(s):  
Frank M. Dugan ◽  
Shari L. Lupien ◽  
Jinguo Hu

“Emerging crops” is a term typically applied to ethnic food plants or to plants used in traditional or ethnic medicine, some of which are becoming viable niche markets in North America. Information on crop protection of these plants is often scarce to lacking. Literature on diagnosis and management of fungal diseases of these crops in North America is concisely reviewed, with information gaps identified. Emphasis is placed on crops comprising recent niche markets for Asian, African, Oceanian, or Latino immigrants. Emerging crops are often tied to economic activities of immigrant populations. Crops of immigrants from Asia, Africa, Latin America, and Oceania are contrasted with crops established by immigrants of European origins, plants usually familiar to North American plant health professionals, and with Native American food and medicinal plants, some of which are experiencing a renaissance as emerging crops.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4858
Author(s):  
Stefano De Benedetti ◽  
Valeria Girlando ◽  
Matias Pasquali ◽  
Alessio Scarafoni

Okara is a soybean transformation agri-food by-product, the massive production of which currently poses severe disposal issues. However, its composition is rich in seed storage proteins, which, once extracted, can represent an interesting source of bioactive peptides. Antimicrobial and antifungal proteins and peptides have been described in plant seeds; thus, okara is a valuable source of compounds, exploitable for integrated pest management. The aim of this work is to describe a rapid and economic procedure to isolate proteins from okara, and to produce an enzymatic proteolyzed product, active against fungal plant pathogens. The procedure allowed the isolation and recovery of about 30% of okara total proteins. Several proteolytic enzymes were screened to identify the proper procedure to produce antifungal compounds. Antifungal activity of the protein digested for 24 h with pancreatin against Fusarium and R. solani mycelial growth and Pseudomonas spp was assessed. A dose-response inhibitory activity was established against fungi belonging to the Fusarium genus. The exploitation of okara to produce antifungal bioactive peptides has the potential to turn this by-product into a paradigmatic example of circular economy, since a field-derived food waste is transformed into a source of valuable compounds to be used in field crops protection.


2021 ◽  
pp. 33-86
Author(s):  
Wagner Bettiol ◽  
◽  
Flávio Henrique Vasconcelos de Medeiros ◽  
Josiane Barros Chiaramonte ◽  
Rodrigo Mendes ◽  
...  

The success of a biological control programme depends on the isolation and selection of antagonists. There is an enormous diversity of culturable microbial species in the soil, rhizosphere, phylloplane, spermosphere and carposphere, which can be used in the isolation and selection of antagonists. The structures of fungal plant pathogens concerned with survival and infection may also be sources of antagonists. Although non-culturable microorganisms and microbiome-based strategies have great potential for development as commercial products in disease control, more knowledge is needed to understand the mechanisms involved in interactions between plants and complex microbial communities. Methods of isolation and selection of the most commercially exploited groups of antagonists and their advantages and disadvantages are discussed in this chapter as well as those of non-traditional antagonists. Finally, possible strategies for engineering the soil and host microbiome to actively promote plant protection against pathogens are discussed.


Sign in / Sign up

Export Citation Format

Share Document