scholarly journals Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health

2021 ◽  
Author(s):  
Renata L. Muylaert ◽  
Tigga Kingston ◽  
Jinhong Luo ◽  
Maurício Humberto Vancine ◽  
Nikolas Galli ◽  
...  

Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that since SARS-CoV-2 emergence several closely-related viruses have been discovered and sarbecovirus-host interactions have gained attention. We assess sampling biases and model bats' current distributions based on climate and landscape relationships and project future scenarios. The most important predictors of species distribution were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in >2 °C hotter locations in a fossil-fueled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.

Author(s):  
Rajesh Melaram ◽  

Microcystins (MCs) are blue-green algal toxins produced by freshwater cyanobacteria. Their environmentally relevant concentrations throughout global surface waters have tampered with human populations’ drinking and recreational supplies. MCs have gained immense public health attention due to their potential health effects. Microcystin-LR (MC-LR) is the most toxic variant of the MCs. Investigations on MC-LR toxicity and detection in water signify a growing potential environmental health concern worldwide. The World Health Organization established a provisional drinking water guidance value of 1 μg/L and a provisional recreational exposure guidance value of 10 μg/L for MC-LR. This review surveys human MC exposure pathways and integrates epidemiological studies to support MCs’ critical exposure pathways. A discussion on monitoring and mitigation strategies provides a guide for policy development in adopting MCs’ regulatory levels to protect public health.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256659
Author(s):  
Mehmet Aykur ◽  
Hande Dagci

Free-living amoeba (FLA) is widely distributed in the natural environment. Since these amoebae are widely found in various waters, they pose an important public health problem. The aim of this study was to detect the presence of Acanthamoeba, B. mandrillaris, and N. fowleri in various water resources by qPCR in Izmir, Turkey. A total of (n = 27) 18.24% Acanthamoeba and (n = 4) 2.7% N. fowleri positives were detected in six different water sources using qPCR with ITS regions (ITS1) specific primers. The resulting concentrations varied in various water samples for Acanthamoeba in the range of 3.2x105-1.4x102 plasmid copies/l and for N. fowleri in the range of 8x103-11x102 plasmid copies/l. The highest concentration of Acanthamoeba and N. fowleri was found in seawater and damp samples respectively. All 27 Acanthamoeba isolates were identified in genotype level based on the 18S rRNA gene as T4 (51.85%), T5 (22.22%), T2 (14.81%) and T15 (11.11%). The four positive N. fowleri isolate was confirmed by sequencing the ITS1, ITS2 and 5.8S rRNA regions using specific primers. Four N. fowleri isolates were genotyped (three isolate as type 2 and one isolate as type 5) and detected for the first time from water sources in Turkey. Acanthamoeba and N. fowleri genotypes found in many natural environments are straightly related to human populations to have pathogenic potentials that may pose a risk to human health. Public health professionals should raise awareness on this issue, and public awareness education should be provided by the assistance of civil authorities. To the best of our knowledge, this is the first study on the quantitative detection and distribution of Acanthamoeba and N. fowleri genotypes in various water sources in Turkey.


2021 ◽  
Vol 39 ◽  
Author(s):  
Pablo Preciado-Rangel ◽  
Luis Guillermo Hernández-Montiel ◽  
Ricardo David Valdez-Cepeda ◽  
Efraín De la Cruz-Lázaro ◽  
Liliana Lara-Capistrán ◽  
...  

The objective of biofortification is the human consumption of high nutritional quality food, rich in micronutrients. Selenium (Se) is an essential micronutrient in human nutrition, and its essentiality has not been evidenced in plants. However, its application in crops and subsequent consumption can mitigate the deficiency of this micronutrient in the diet of human populations. This work analyzes the capacity of sodium selenite (Na2SeO3) to increase yield, biosynthesis of bioactive compounds and their accumulation in tomato fruits. For this, five treatments were applied via nutrient solution: 0, 2, 4, 6, and 8 mg L-1. At harvest, the nutraceutical quality and the accumulation of Se in fruits were quantified, as well as the productivity of tomato plant. Biofortification was positively affected by the biosynthesis of phytochemical compounds and their concentration in fruit, although tomato yield decreased. The incorporation of Se in nutritive solution is an alternative to increase both the biosynthesis of phytochemical compounds and the concentration of this element in tomato fruits with the possibility of improving public health through its consumption.


PLoS Biology ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. e3000506
Author(s):  
Olga Krylova ◽  
David J. D. Earn

Smallpox is unique among infectious diseases in the degree to which it devastated human populations, its long history of control interventions, and the fact that it has been successfully eradicated. Mortality from smallpox in London, England was carefully documented, weekly, for nearly 300 years, providing a rare and valuable source for the study of ecology and evolution of infectious disease. We describe and analyze smallpox mortality in London from 1664 to 1930. We digitized the weekly records published in the London Bills of Mortality (LBoM) and the Registrar General’s Weekly Returns (RGWRs). We annotated the resulting time series with a sequence of historical events that might have influenced smallpox dynamics in London. We present a spectral analysis that reveals how periodicities in reported smallpox mortality changed over decades and centuries; many of these changes in epidemic patterns are correlated with changes in control interventions and public health policies. We also examine how the seasonality of reported smallpox mortality changed from the 17th to 20th centuries in London.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S585-S586
Author(s):  
Sarah McGough ◽  
Derek MacFadden ◽  
Mohammad Hattab ◽  
Kare Molbak ◽  
Mauricio Santillana

Abstract Background Widely recognized as a major public health threat globally, the rapid increase of antibiotic resistance in bacteria could soon render our most effective method to combat infections obsolete. Factors influencing the burden of resistance in human populations remain poorly described, though temperature is known to play an important role in mechanisms of bacterial growth and transmission. Methods Here, we present the first evidence that ambient temperatures may modulate the rate of increase of antibiotic resistance across Europe. Using a comprehensive dataset containing information across 28 countries, for 17 years (2000–2016), 3 common bacterial pathogens, and 4 antibiotic classes collectively representing over 4 million tested isolates, we show that antibiotic resistance has increased more rapidly in warmer regions over a period of nearly 2 decades. Results Specifically, we show that European countries with 10°C warmer ambient temperatures have experienced more rapid increases in antibiotic resistance to E. coli and K. pneumoniae over the 17-year period, ranging between 0.33%/year (95% CI 0.2, 0.5) and 1.2%/year (0.4, 1.9), even after accounting for recognized drivers of resistance including antibiotic consumption and population density. We found a decreasing relationship for S. aureus and methicillin of -0.4%/year (95% CI −0.7, 0.0), reflecting widespread declines in MRSA across Europe over the study period. Conclusion Our findings suggest that rising temperatures globally may hasten the spread of resistance and complicate efforts to mitigate it. Disclosures All authors: No reported disclosures.


Author(s):  
David Wastell ◽  
Sue White

This chapterr shifts the focus from animals to humans, and examines the extant literature on the human epigenome. It reviews seminal work on the impact of natural disasters (such as the Dutch Hunger Winter) on the epigenetic profile of those subject to these calamities. It describes how gestation and early infancy are reconfigured as a site of risk. It interrogates the nature of the claims made within the literature and also examines the thought style and presuppositions, particularly in those studies which seek to translate findings from laboratory to the clinic and public health policy. The small size of the effects on human populations is also highlighted, compared to other influences such as social deprivation.


2004 ◽  
Vol 359 (1447) ◽  
pp. 1107-1114 ◽  
Author(s):  
Diana Bell ◽  
Scott Roberton ◽  
Paul R. Hunter

The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long–term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals.


2020 ◽  
Vol 76 (4) ◽  
pp. 1045-1066
Author(s):  
James McNamara ◽  
Elizabeth J. Z. Robinson ◽  
Katharine Abernethy ◽  
Donald Midoko Iponga ◽  
Hannah N. K. Sackey ◽  
...  

Abstract Wild animals play an integral and complex role in the economies and ecologies of many countries across the globe, including those of West and Central Africa, the focus of this policy perspective. The trade in wild meat, and its role in diets, have been brought into focus as a consequence of discussions over the origins of COVID-19. As a result, there have been calls for the closure of China’s “wet markets”; greater scrutiny of the wildlife trade in general; and a spotlight has been placed on the potential risks posed by growing human populations and shrinking natural habitats for animal to human transmission of zoonotic diseases. However, to date there has been little attention given to what the consequences of the COVID-19 economic shock may be for the wildlife trade; the people who rely on it for their livelihoods; and the wildlife that is exploited. In this policy perspective, we argue that the links between the COVID-19 pandemic, rural livelihoods and wildlife are likely to be more complex, more nuanced, and more far-reaching, than is represented in the literature to date. We develop a causal model that tracks the likely implications for the wild meat trade of the systemic crisis triggered by COVID-19. We focus on the resulting economic shockwave, as manifested in the collapse in global demand for commodities such as oil, and international tourism services, and what this may mean for local African economies and livelihoods. We trace the shockwave through to the consequences for the use of, and demand for, wild meats as households respond to these changes. We suggest that understanding and predicting the complex dynamics of wild meat use requires increased collaboration between environmental and resource economics and the ecological and conservation sciences.


Viruses ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 324 ◽  
Author(s):  
Sumit Sharma ◽  
Marie Hagbom ◽  
Lennart Svensson ◽  
Johan Nordgren

Innate resistance to viral infections can be attributed to mutations in genes involved in the immune response, or to the receptor/ligand. A remarkable example of the latter is the recently described Mendelian trait resistance to clinically important and globally predominating genotypes of rotavirus, the most common agent of severe dehydrating gastroenteritis in children worldwide. This resistance appears to be rotavirus genotype-dependent and is mainly mediated by histo-blood group antigens (HBGAs), which function as a receptor or attachment factors on gut epithelial surfaces. HBGA synthesis is mediated by fucosyltransferases and glycosyltransferases under the genetic control of the FUT2 (secretor), FUT3 (Lewis), and ABO (H) genes on chromosome 19. Significant genotypic and phenotypic diversity of HBGA expression exists between different human populations. This genetic diversity has an effect on genotype-specific susceptibility, molecular epidemiology, and vaccine take. Here, we will discuss studies on genetic susceptibility to rotavirus infection and place them in the context of population susceptibility, rotavirus epidemiology, vaccine take, and public health impact.


2020 ◽  
Vol 12 (6) ◽  
pp. 2367 ◽  
Author(s):  
Nadezhda Stepanova ◽  
Daria Gritsenko ◽  
Tuyara Gavrilyeva ◽  
Anna Belokur

Extreme environmental conditions, sparsely distributed human populations, and diverse local economies characterize the Russian Arctic and Far East. There is an urgent need for multidisciplinary research into how the Arctic and Far East can be developed sustainably as global changes in the environment and the economic priorities of nations accelerate and globalized societies emerge. Yet, when it comes to sustainability indicators, little consideration has been given thus far to sparsely populated and remote territories. Rather, the majority of indicators have been developed and tested while using empirical research gathered from cities and densely populated rural localities. As a result, there is no scientific technique that can be used to monitor the development of sparsely populated territories and inform the decisions of policymakers who hope to account for local specificity. This article suggests a conceptual model for linking sustainability to the unique characteristics of the sparsely populated regions of the Arctic and Far East. We provide an empirical illustration that is based on regional-level data from the sparsely populated territories of the Russian Federation. We conclude by suggesting indicators that could be best suited to promoting balanced regional development that accounts for the environment, economy, and social needs of sparsely populated territories.


Sign in / Sign up

Export Citation Format

Share Document