scholarly journals A neuron, microglia, and astrocyte triple coculture model to study Alzheimer disease

2021 ◽  
Author(s):  
Celia Luchena ◽  
Jone Zuazo-Ibarra ◽  
Jorge Valero ◽  
Carlos Matute ◽  
Elena Alberdi ◽  
...  

Glial cells are essential to understand Alzheimer disease (AD) progression, given their role in neuroinflammation and neurodegeneration. There is a need for reliable and easy to manipulate models that allow studying the mechanisms behind neuron and glia communication. Currently available models such as co-cultures require complex methodologies and/or might not be affordable for all laboratories. With this in mind, we aimed to establish a straightforward in vitro setting with neurons and glial cells to study AD. We generated a triple co-culture with neurons, microglia and astrocytes. Immunofluorescence, western blot and ELISA techniques were used to characterize the effects of oligomeric Aβ (oAβ) in this model. We found that, in the triple co-culture, microglia increased the expression of anti-inflammatory markers Arginase I and TGF-β1, and reduced pro-inflammatory iNOS and IL-1β, compared with microglia alone. Astrocytes reduced expression of pro-inflammatory A1 markers AMIGO2 and C3, and displayed a ramified morphology resembling physiological conditions. Lastly, neurons increased post-synaptic markers, and developed more and longer branches than in individual primary cultures. Addition of oAβ in the triple co-culture reduced synaptic markers and increased microglial activation, which are hallmarks of AD. Consequently, we developed a reliable model, where cells better resemble physiological conditions: microglia are less inflammatory, astrocytes are less reactive and neurons display a more mature morphology than in individual primary cultures. Moreover, we were able to recapitulate Aβ-induced synaptic loss and inflammation. This model emerges as a powerful tool to study neurodegeneration and inflammation in the context of AD and other neurodegenerative diseases.

1998 ◽  
Vol 7 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Patrick Kofler ◽  
Bettina Wiesenhofer ◽  
Christine Rehrl ◽  
Gottfried Baier ◽  
Günter Stockhammer ◽  
...  

Sufficient gene transfer into CNS-derived cells is the most crucial step to develop strategies for gene therapy. In this study liposome-mediated gene transfer using a β-galactosidase (β-GAL) reporter gene was performed in vitro (C6 glioma cells, NT2 neuronal precursor cells, 3T3 fibroblasts, primary glial cells) and in vivo. Using Trypan blue exclusion staining, optimal lipid concentration was observed in the range of 10-12 μg/mL. Under optimal conditions (80,000 cells/16 mm well, incubation overnight, lipid/DNA ratio = 1:18) a high transfection rate was achieved (<9% for C6 cells; <1% for NT2 cells). In primary cultures of glial cells a fair amount of positive stained cells (glial cell) was found, but the transfection efficiency was lower (<0.1%). A “boost-lipofection” markedly increased (twice) lipofection efficiency in C6 cells. Expression of β-GAL reached a maximum after 3-5 days. When the liposome–DNA complexes were injected/infused directly into the brains of adult rats, several weakly stained cells could be observed in the brain region adjacent to the injection site. It is concluded that liposome-mediated gene transfer is an efficient method for gene transfer into CNS cells in vitro, but the transfection efficiency into the rat brain in vivo is far too low and therefore not applicable.


2021 ◽  
Vol 22 (4) ◽  
pp. 1887
Author(s):  
Michael Meir ◽  
Felix Kannapin ◽  
Markus Diefenbacher ◽  
Yalda Ghoreishi ◽  
Catherine Kollmann ◽  
...  

Enteric glial cells (EGCs) of the enteric nervous system are critically involved in the maintenance of intestinal epithelial barrier function (IEB). The underlying mechanisms remain undefined. Glial cell line-derived neurotrophic factor (GDNF) contributes to IEB maturation and may therefore be the predominant mediator of this process by EGCs. Using GFAPcre x Ai14floxed mice to isolate EGCs by Fluorescence-activated cell sorting (FACS), we confirmed that they synthesize GDNF in vivo as well as in primary cultures demonstrating that EGCs are a rich source of GDNF in vivo and in vitro. Co-culture of EGCs with Caco2 cells resulted in IEB maturation which was abrogated when GDNF was either depleted from EGC supernatants, or knocked down in EGCs or when the GDNF receptor RET was blocked. Further, TNFα-induced loss of IEB function in Caco2 cells and in organoids was attenuated by EGC supernatants or by recombinant GDNF. These barrier-protective effects were blunted when using supernatants from GDNF-deficient EGCs or by RET receptor blockade. Together, our data show that EGCs produce GDNF to maintain IEB function in vitro through the RET receptor.


1997 ◽  
Vol 25 (3) ◽  
pp. 289-296
Author(s):  
Inger K. Grundt ◽  
Marvelyn Rise ◽  
Harald Nyland

The developing nervous system is vulnerable to heavy metal exposure, which can cause alterations in neuronal and glial cells in the brain. Thus, heavy metals such as mercury and lead reduce myelin galactocerebroside (GalC) synthesis, and increase the ratio of non-hydroxylated fatty acids to hydroxylated fatty acids (GalC-N:GalC-OH) in the GalC molecules in newborn rats. This study investigated the effect of lead on the expression of myelin components by the myelin-forming oligodendroglial cells (OG) in vitro. Primary cultures of mixed glial cells from brains of newborn rats were continuously exposed to triethyllead (TEL; 1nM, 10nM, 50nM and 100nM) for 3 weeks, one week after seeding. The first morphological alteration observed was an increased proliferation of OG in cultures exposed to 10nM TEL. Biochemical analyses showed up-regulation of the enzymes, 2'3’-cyclic nucleotide 3’-phosphodiesterase and 5’-nucleotidase. GalC synthesis was also stimulated, and the ratio GalC-N:GalC-OH was reduced. The results indicate that TEL stimulates the differentiation and maturation of OG in cultures, which suggests that the alterations induced by heavy metals in newborn rats are not due to interference with the OG maturation.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1413
Author(s):  
Katterine Salazar ◽  
Francisca Espinoza ◽  
Gustavo Cerda-Gallardo ◽  
Luciano Ferrada ◽  
Rocío Magdalena ◽  
...  

During brain development, sodium–vitamin C transporter (SVCT2) has been detected primarily in radial glial cells in situ, with low-to-absent expression in cerebral cortex neuroblasts. However, strong SVCT2 expression is observed during the first postnatal days, resulting in increased intracellular concentration of vitamin C. Hippocampal neurons isolated from SVCT2 knockout mice showed shorter neurites and low clustering of glutamate receptors. Other studies have shown that vitamin C-deprived guinea pigs have reduced spatial memory, suggesting that ascorbic acid (AA) and SVCT2 have important roles in postnatal neuronal differentiation and neurite formation. In this study, SVCT2 lentiviral overexpression induced branching and increased synaptic proteins expression in primary cultures of cortical neurons. Analysis in neuroblastoma 2a (Neuro2a) and human subventricular tumor C3 (HSVT-C3) cells showed similar branching results. SVCT2 was mainly observed in the cell membrane and endoplasmic reticulum; however, it was not detected in the mitochondria. Cellular branching in neuronal cells and in a previously standardized neurosphere assay is dependent on the recycling of vitamin C or reduction in dehydroascorbic acid (DHA, produced by neurons) by glial cells. The effect of WZB117, a selective glucose/DHA transporter 1 (GLUT1) inhibitor expressed in glial cells, was also studied. By inhibiting GLUT1 glial cells, a loss of branching is observed in vitro, which is reproduced in the cerebral cortex in situ. We concluded that vitamin C recycling between neurons and astrocyte-like cells is fundamental to maintain neuronal differentiation in vitro and in vivo. The recycling activity begins at the cerebral postnatal cortex when neurons increase SVCT2 expression and concomitantly, GLUT1 is expressed in glial cells.


Reproduction ◽  
2000 ◽  
pp. 391-396 ◽  
Author(s):  
AH Duittoz ◽  
M Batailler

The aim of this study was to investigate the development of pulsatile GnRH secretion by GnRH neurones in primary cultures of olfactory placodes from ovine embryos. Culture medium was collected every 10 min for 8 h to detect pulsatile secretion. In the first experiment, pulsatile secretion was studied in two different sets of cultures after 17 and 24 days in vitro. In the second experiment, a set of cultures was tested after 10, 17 and 24 days in vitro to investigate the development of pulsatile GnRH secretion in each individual culture. This study demonstrated that (i) primary cultures of GnRH neurones from olfactory explants secreted GnRH in a pulsatile manner and that the frequency and mean interpulse duration were similar to those reported in castrated ewes, and (ii) pulsatile secretion was not present at the beginning of the culture but was observed between 17 and 24 days in vitro, indicating the maturation of individual neurones and the development of their synchronization.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hafiz Muhammad Umer Farooqi ◽  
Bohye Kang ◽  
Muhammad Asad Ullah Khalid ◽  
Abdul Rahim Chethikkattuveli Salih ◽  
Kinam Hyun ◽  
...  

AbstractHepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor β1 (TGF-β1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-β1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.


1997 ◽  
Vol 25 (5) ◽  
pp. 497-503
Author(s):  
Jean-Paul Morin ◽  
Marc E. De Broe ◽  
Walter Pfaller ◽  
Gabriele Schmuck

An ECVAM task force on nephrotoxicity has been established to advise, in particular, on the follow-up to recommendations made in the ECVAM workshop report on nephrotoxicity testing in vitro. Since this workshop was held, in 1994, there have been several improvements in the techniques used. For example, the duration of renal slice viability, and the maintenance of functional activities in slices, have been improved by using dynamic incubation systems with higher oxygen tensions and more-appropriate cell culture media. Highly differentiated primary cultures of pig, human and rabbit proximal tubule cells have been established by using specific cell isolation procedures and/or selective culture media. To date, the most comparable phenotypic expression and transepithelial transport capacities to proximal tubules in vivo have been obtained with primary cultures of rabbit proximal tubule cells which are grown on bicompartmental supports; in this system, transepithelial substrate gradients are generated and the transepithelial transport of both organic anions and cations is highly active. This in vitro system has been selected by ECVAM for further evaluation and prevalidation. Industrial needs in the area of nephrotoxicity testing have been identified, and recommendations are made at the end of this report concerning possible future initiatives.


2021 ◽  
Vol 22 (4) ◽  
pp. 1985
Author(s):  
Xiaohe Li ◽  
Ling Ma ◽  
Kai Huang ◽  
Yuli Wei ◽  
Shida Long ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a fatal and age-related pulmonary disease. Nintedanib is a receptor tyrosine kinase inhibitor, and one of the only two listed drugs against IPF. Regorafenib is a novel, orally active, multi-kinase inhibitor that has similar targets to nintedanib and is applied to treat colorectal cancer and gastrointestinal stromal tumors in patients. In this study, we first identified that regorafenib could alleviate bleomycin-induced pulmonary fibrosis in mice. The in vivo experiments indicated that regorafenib suppresses collagen accumulation and myofibroblast activation. Further in vitro mechanism studies showed that regorafenib inhibits the activation and migration of myofibroblasts and extracellular matrix production, mainly through suppressing the transforming growth factor (TGF)-β1/Smad and non-Smad signaling pathways. In vitro studies have also indicated that regorafenib could augment autophagy in myofibroblasts by suppressing TGF-β1/mTOR (mechanistic target of rapamycin) signaling, and could promote apoptosis in myofibroblasts. In conclusion, regorafenib attenuates bleomycin-induced pulmonary fibrosis by suppressing the TGF-β1 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document