scholarly journals Global cooling & the rise of modern grasslands: Revealing cause & effect of environmental change on insect diversification dynamics

2018 ◽  
Author(s):  
Katie E. Davis ◽  
Adam T. Bakewell ◽  
Jon Hill ◽  
Hojun Song ◽  
Peter Mayhew

AbstractUtilising geo-historical environmental data to disentangle cause and effect in complex natural systems is a major goal in our quest to better understand how climate change has shaped life on Earth. Global temperature is known to drive biotic change over macro-evolutionary time-scales but the mechanisms by which it acts are often unclear. Here, we model speciation rates for Orthoptera within a phylogenetic framework and use this to demonstrate that global cooling is strongly correlated with increased speciation rates. Transfer Entropy analyses reveal the presence of one or more additional processes that are required to explain the information transfer from global temperature to Orthoptera speciation. We identify the rise of C4 grasslands as one such mechanism operating from the Miocene onwards. We therefore demonstrate the value of the geological record in increasing our understanding of climate change on macro-evolutionary and macro-ecological processes.

2019 ◽  
Vol 5 (4) ◽  
pp. eaaw2869 ◽  
Author(s):  
E. Dinerstein ◽  
C. Vynne ◽  
E. Sala ◽  
A. R. Joshi ◽  
S. Fernando ◽  
...  

The Global Deal for Nature (GDN) is a time-bound, science-driven plan to save the diversity and abundance of life on Earth. Pairing the GDN and the Paris Climate Agreement would avoid catastrophic climate change, conserve species, and secure essential ecosystem services. New findings give urgency to this union: Less than half of the terrestrial realm is intact, yet conserving all native ecosystems—coupled with energy transition measures—will be required to remain below a 1.5°C rise in average global temperature. The GDN targets 30% of Earth to be formally protected and an additional 20% designated as climate stabilization areas, by 2030, to stay below 1.5°C. We highlight the 67% of terrestrial ecoregions that can meet 30% protection, thereby reducing extinction threats and carbon emissions from natural reservoirs. Freshwater and marine targets included here extend the GDN to all realms and provide a pathway to ensuring a more livable biosphere.


Author(s):  
Karen J. Esler ◽  
Anna L. Jacobsen ◽  
R. Brandon Pratt

Extensive habitat loss and habitat conversion has occurred across all mediterranean-type climate (MTC) regions, driven by increasing human populations who have converted large tracts of land to production, transport, and residential use (land-use, land-cover change) while simultaneously introducing novel forms of disturbance to natural landscapes. Remaining habitat, often fragmented and in isolated or remote (mountainous) areas, is threatened and degraded by altered fire regimes, introduction of invasive species, nutrient enrichment, and climate change. The types and impacts of these threats vary across MTC regions, but overall these drivers of change show little signs of abatement and many have the potential to interact with MTC region natural systems in complex ways.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Adelle Thomas ◽  
Emily Theokritoff ◽  
Alexandra Lesnikowski ◽  
Diana Reckien ◽  
Kripa Jagannathan ◽  
...  

AbstractConstraints and limits to adaptation are critical to understanding the extent to which human and natural systems can successfully adapt to climate change. We conduct a systematic review of 1,682 academic studies on human adaptation responses to identify patterns in constraints and limits to adaptation for different regions, sectors, hazards, adaptation response types, and actors. Using definitions of constraints and limits provided by the Intergovernmental Panel on Climate Change (IPCC), we find that most literature identifies constraints to adaptation but that there is limited literature focused on limits to adaptation. Central and South America and Small Islands generally report greater constraints and both hard and soft limits to adaptation. Technological, infrastructural, and ecosystem-based adaptation suggest more evidence of constraints and hard limits than other types of responses. Individuals and households face economic and socio-cultural constraints which also inhibit behavioral adaptation responses and may lead to limits. Finance, governance, institutional, and policy constraints are most prevalent globally. These findings provide early signposts for boundaries of human adaptation and are of high relevance for guiding proactive adaptation financing and governance from local to global scales.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Tharanga Thoradeniya ◽  
Saroj Jayasinghe

Abstract Background The COVID-19 pandemic is adversely impacting modern human civilization. A global view using a systems science approach is necessary to recognize the close interactions between health of animals, humans and the environment. Discussion A model is developed initially by describing five sequential or parallel steps on how a RNA virus emerged from animals and became a pandemic: 1. Origins in the animal kingdom; 2. Transmission to domesticated animals; 3. Inter-species transmission to humans; 4. Local epidemics; 5. Global spread towards a pandemic. The next stage identifies global level determinants from the physical environments, the biosphere and social environment that influence these steps to derive a generic conceptual model. It identifies that future pandemics are likely to emerge from ecological processes (climate change, loss of biodiversity), anthropogenic social processes (i.e. corporate interests, culture and globalization) and world population growth. Intervention would therefore require modifications or dampening these generators and prevent future periodic pandemics that would reverse human development. Addressing issues such as poorly planned urbanization, climate change and deforestation coincide with SDGs such as sustainable cities and communities (Goal 11), climate action (Goal 13) and preserving forests and other ecosystems (Goal 15). This will be an added justification to address them as global priorities. Some determinants in the model are poorly addressed by SDGs such as the case of population pressures, cultural factors, corporate interests and globalization. The overarching process of globalization will require modifications to the structures, processes and mechanisms of global governance. The defects in global governance are arguably due to historical reasons and the neo-liberal capitalist order. This became evident especially in the aftermath of the COVID-19 when the vaccination roll-out led to violations of universal values of equity and right to life by some of the powerful and affluent nations. Summary A systems approach leads us to a model that shows the need to tackle several factors, some of which are not adequately addressed by SDGs and require restructuring of global governance and political economy.


2021 ◽  
Vol 7 (8) ◽  
pp. 587
Author(s):  
Danielle Hamae Yamauchi ◽  
Hans Garcia Garces ◽  
Marcus de Melo Teixeira ◽  
Gabriel Fellipe Barros Rodrigues ◽  
Leila Sabrina Ullmann ◽  
...  

Soil is the principal habitat and reservoir of fungi that act on ecological processes vital for life on Earth. Understanding soil fungal community structures and the patterns of species distribution is crucial, considering climatic change and the increasing anthropic impacts affecting nature. We evaluated the soil fungal diversity in southeastern Brazil, in a transitional region that harbors patches of distinct biomes and ecoregions. The samples originated from eight habitats, namely: semi-deciduous forest, Brazilian savanna, pasture, coffee and sugarcane plantation, abandoned buildings, owls’ and armadillos’ burrows. Forty-four soil samples collected in two periods were evaluated by metagenomic approaches, focusing on the high-throughput DNA sequencing of the ITS2 rDNA region in the Illumina platform. Normalized difference vegetation index (NDVI) was used for vegetation cover analysis. NDVI values showed a linear relationship with both diversity and richness, reinforcing the importance of a healthy vegetation for the establishment of a diverse and complex fungal community. The owls’ burrows presented a peculiar fungal composition, including high rates of Onygenales, commonly associated with keratinous animal wastes, and Trichosporonales, a group of basidiomycetous yeasts. Levels of organic matter and copper influenced all guild communities analyzed, supporting them as important drivers in shaping the fungal communities’ structures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah T. Saalfeld ◽  
Brooke L. Hill ◽  
Christine M. Hunter ◽  
Charles J. Frost ◽  
Richard B. Lanctot

AbstractClimate change in the Arctic is leading to earlier summers, creating a phenological mismatch between the hatching of insectivorous birds and the availability of their invertebrate prey. While phenological mismatch would presumably lower the survival of chicks, climate change is also leading to longer, warmer summers that may increase the annual productivity of birds by allowing adults to lay nests over a longer period of time, replace more nests that fail, and provide physiological relief to chicks (i.e., warmer temperatures that reduce thermoregulatory costs). However, there is little information on how these competing ecological processes will ultimately impact the demography of bird populations. In 2008 and 2009, we investigated the survival of chicks from initial and experimentally-induced replacement nests of arcticola Dunlin (Calidris alpina) breeding near Utqiaġvik, Alaska. We monitored survival of 66 broods from 41 initial and 25 replacement nests. Based on the average hatch date of each group, chick survival (up to age 15 days) from replacement nests (Ŝi = 0.10; 95% CI = 0.02–0.22) was substantially lower than initial nests (Ŝi = 0.67; 95% CI = 0.48–0.81). Daily survival rates were greater for older chicks, chicks from earlier-laid clutches, and during periods of greater invertebrate availability. As temperature was less important to daily survival rates of shorebird chicks than invertebrate availability, our results indicate that any physiological relief experienced by chicks will likely be overshadowed by the need for adequate food. Furthermore, the processes creating a phenological mismatch between hatching of shorebird young and invertebrate emergence ensures that warmer, longer breeding seasons will not translate into abundant food throughout the longer summers. Thus, despite having a greater opportunity to nest later (and potentially replace nests), young from these late-hatching broods will likely not have sufficient food to survive. Collectively, these results indicate that warmer, longer summers in the Arctic are unlikely to increase annual recruitment rates, and thus unable to compensate for low adult survival, which is typically limited by factors away from the Arctic-breeding grounds.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 273
Author(s):  
Samuel Royer-Tardif ◽  
Jürgen Bauhus ◽  
Frédérik Doyon ◽  
Philippe Nolet ◽  
Nelson Thiffault ◽  
...  

Climate change is threatening our ability to manage forest ecosystems sustainably. Despite strong consensus on the need for a broad portfolio of options to face this challenge, diversified management options have yet to be widely implemented. Inspired by functional zoning, a concept aimed at optimizing biodiversity conservation and wood production in multiple-use forest landscapes, we present a portfolio of management options that intersects management objectives with forest vulnerability to better address the wide range of goals inherent to forest management under climate change. Using this approach, we illustrate how different adaptation options could be implemented when faced with impacts related to climate change and its uncertainty. These options range from establishing ecological reserves in climatic refuges, where self-organizing ecological processes can result in resilient forests, to intensive plantation silviculture that could ensure a stable wood supply in an uncertain future. While adaptation measures in forests that are less vulnerable correspond to the traditional functional zoning management objectives, forests with higher vulnerability might be candidates for transformative measures as they may be more susceptible to abrupt changes in structure and composition. To illustrate how this portfolio of management options could be applied, we present a theoretical case study for the eastern boreal forest of Canada. Even if these options are supported by solid evidence, their implementation across the landscape may present some challenges and will require good communication among stakeholders and with the public.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 755
Author(s):  
Eric B. Searle ◽  
F. Wayne Bell ◽  
Guy R. Larocque ◽  
Mathieu Fortin ◽  
Jennifer Dacosta ◽  
...  

In the past two decades, forest management has undergone major paradigm shifts that are challenging the current forest modelling architecture. New silvicultural systems, guidelines for natural disturbance emulation, a desire to enhance structural complexity, major advances in successional theory, and climate change have all highlighted the limitations of current empirical models in covering this range of conditions. Mechanistic models, which focus on modelling underlying ecological processes rather than specific forest conditions, have the potential to meet these new paradigm shifts in a consistent framework, thereby streamlining the planning process. Here we use the NEBIE (a silvicultural intervention scale that classifies management intensities as natural, extensive, basic, intensive, and elite) plot network, from across Ontario, Canada, to examine the applicability of a mechanistic model, ZELIG-CFS (a version of the ZELIG tree growth model developed by the Canadian Forest Service), to simulate yields and species compositions. As silvicultural intensity increased, overall yield generally increased. Species compositions met the desired outcomes when specific silvicultural treatments were implemented and otherwise generally moved from more shade-intolerant to more shade-tolerant species through time. Our results indicated that a mechanistic model can simulate complex stands across a range of forest types and silvicultural systems while accounting for climate change. Finally, we highlight the need to improve the modelling of regeneration processes in ZELIG-CFS to better represent regeneration dynamics in plantations. While fine-tuning is needed, mechanistic models present an option to incorporate adaptive complexity into modelling forest management outcomes.


Author(s):  
Paula Schirrmacher ◽  
Christina C. Roggatz ◽  
David M. Benoit ◽  
Jörg D. Hardege

AbstractWith carbon dioxide (CO2) levels rising dramatically, climate change threatens marine environments. Due to increasing CO2 concentrations in the ocean, pH levels are expected to drop by 0.4 units by the end of the century. There is an urgent need to understand the impact of ocean acidification on chemical-ecological processes. To date, the extent and mechanisms by which the decreasing ocean pH influences chemical communication are unclear. Combining behaviour assays with computational chemistry, we explore the function of the predator related cue 2-phenylethylamine (PEA) for hermit crabs (Pagurus bernhardus) in current and end-of-the-century oceanic pH. Living in intertidal environments, hermit crabs face large pH fluctuations in their current habitat in addition to climate-change related ocean acidification. We demonstrate that the dietary predator cue PEA for mammals and sea lampreys is an attractant for hermit crabs, with the potency of the cue increasing with decreasing pH levels. In order to explain this increased potency, we assess changes to PEA’s conformational and charge-related properties as one potential mechanistic pathway. Using quantum chemical calculations validated by NMR spectroscopy, we characterise the different protonation states of PEA in water. We show how protonation of PEA could affect receptor-ligand binding, using a possible model receptor for PEA (human TAAR1). Investigating potential mechanisms of pH-dependent effects on olfactory perception of PEA and the respective behavioural response, our study advances the understanding of how ocean acidification interferes with the sense of smell and thereby might impact essential ecological interactions in marine ecosystems.


2021 ◽  
Author(s):  
Chengcheng Ye ◽  
Yibo Yang ◽  
Xiaomin Fang ◽  
Weilin Zhang ◽  
Chunhui Song ◽  
...  

<p>Global cooling, the early uplift of the Tibetan Plateau, and the retreat of the Paratethys are three main factors that regulate long-term climate change in the Asian interior during the Cenozoic. However, the debated elevation history of the Tibetan Plateau and the overlapping climate effects of the Tibetan Plateau uplift and Paratethys retreat makes it difficult to assess the driving mechanism on regional climate change in a particular period. Some recent progress suggests that precisely dated Paratethys transgression/regression cycles appear to have fluctuated over broad regions with low relief in the northern Tibetan Plateau in the middle Eocene–early Oligocene, when the global climate was characterized by generally continuous cooling followed by the rapid Eocene–Oligocene climate transition (EOT). Therefore, a middle Eocene–early Oligocene record from the Asian interior with unambiguous paleoclimatic implications offers an opportunity to distinguish between the climatic effects of the Paratethys retreat and those of global cooling.</p><p>Here, we present a complete paleolake salinity record from middle Eocene to early Miocene (~42-29 Ma) in the Qaidam Basin using detailed clay boron content and clay mineralogical investigations. Two independent paleosalimeters, equivalent boron and Couch’s salinity, collectively present a three-staged salinity evolution, from an oligohaline–mesohaline environment in the middle Eocene (42-~34 Ma) to a mesosaline environment in late Eocene-early Oligocene (~34-~29 Ma). This clay boron-derived salinity evolution is further supported by the published chloride-based and ostracod-based paleosalinity estimates in the Qaidam Basin. Our quantitative paleolake reconstruction between ~42 and 29 Ma in the Qaidam Basin resembles the hydroclimate change in the neighboring Xining Basin, of which both present good agreement with changes of marine benthic oxygen isotope compositions. We thus speculated that the secular trend of clay boron-derived paleolake salinity in ~42-29 Ma is primarily controlled by global cooling, which regulates regional climate change by influencing the evaporation capacity in the moisture source of Qaidam Basin. Superimposed on this trend, the Paratethys transgression/regression cycles served as an important factor regulating wet/dry fluctuations in the Asian interior between ~42 and ~34 Ma.</p>


Sign in / Sign up

Export Citation Format

Share Document