scholarly journals Gut Microbiome Biomarkers in Adolescent Obesity: a Regional Study

2019 ◽  
Author(s):  
Xuefeng Gao ◽  
Binbin Wu ◽  
Yonglong Pan ◽  
Shaoming Zhou ◽  
Ming Zhang ◽  
...  

ABSTRACTPurposeThis study aimed to characterize the gut microbiota in obese Shenzhen adolescents, and evaluate the influence of gender on BMI-related differences in the gut microbiome.MethodsPhysical examinations, blood pressure measurement, serological assay, and body composition evaluation were conducted on two-hundred and five adolescents from Shenzhen. Fecal microbiome composition was profiled via 16S rRNA gene sequencing. A Random Forest (RF) classifier model was built to distinguish the BMI categories based on the gut bacterial composition.ResultsFifty-six taxa consisting mainly of Firmicutes were identified that having significant associations with BMI; two OTUs belonging to Ruminococcaceae and one belonging to Lachnospiraceae had relatively strong positive correlations with body fate rate, waistline, and most of serum biochemical parameters. Based on the 56 BMI-associated OTUs, the RF model showed a robust classification accuracy (AUC 0.96) for predicting the obese phenotype. Gender-specific differences in the gut microbiome composition was obtained, and a lower relative abundance of Odoribacter was particularly found in obese boys. Functional analysis revealed a deficiency in bacterial gene contents related to PPAR signaling pathway in obese subjects for both genders; significantly lower levels of adipocytokine signaling pathway and ethylbenzene degradation were particularly detected in obese girls.ConclusionsThis study revealed unique features of gut microbiome in terms of microbial composition and metabolic functions in obese Shenzhen adolescents. The effect of geographical location, age and gender on the gut microbiome should be carefully considered in case–control studies.

Author(s):  
Alexander Kurilshikov ◽  
Carolina Medina-Gomez ◽  
Rodrigo Bacigalupe ◽  
Djawad Radjabzadeh ◽  
Jun Wang ◽  
...  

AbstractTo study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed whole-genome genotypes and 16S fecal microbiome data from 18,473 individuals (25 cohorts). Microbial composition showed high variability across cohorts: we detected only 9 out of 410 genera in more than 95% of the samples. A genome-wide association study (GWAS) of host genetic variation in relation to microbial taxa identified 30 loci affecting microbome taxa at a genome-wide significant (P<5×10-8) threshold. Just one locus, the lactase (LCT) gene region, reached study-wide significance (GWAS signal P=8.6×10−21); it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.94×10−10<P<5×10−8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization analyses identified enrichment of microbiome trait loci SNPs in the metabolic, nutrition and environment domains and indicated food preferences and diseases as mediators of genetic effects.


2021 ◽  
Author(s):  
Artur Trzebny ◽  
Anna Slodkowicz-Kowalska ◽  
Johanna Björkroth ◽  
Miroslawa Dabert

AbstractThe animal gut microbiota consist of many different microorganisms, mainly bacteria, but archaea, fungi, protozoans, and viruses may also be present. This complex and dynamic community of microorganisms may change during parasitic infection. In the present study, we investigated the effect of the presence of microsporidians on the composition of the mosquito gut microbiota and linked some microbiome taxa and functionalities to infections caused by these parasites. We characterised bacterial communities of 188 mosquito females, of which 108 were positive for microsporidian DNA. To assess how bacterial communities change during microsporidian infection, microbiome structures were identified using 16S rRNA microbial profiling. In total, we identified 46 families and four higher taxa, of which Comamonadaceae, Enterobacteriaceae, Flavobacteriaceae and Pseudomonadaceae were the most abundant mosquito-associated bacterial families. Our data suggest that the mosquito gut microbial composition varies among host species. In addition, we found a correlation between the microbiome composition and the presence of microsporidians. The prediction of metagenome functional content from the 16S rRNA gene sequencing suggests that microsporidian infection is characterised by some bacterial species capable of specific metabolic functions, especially the biosynthesis of ansamycins and vancomycin antibiotics and the pentose phosphate pathway. Moreover, we detected a positive correlation between the presence of microsporidian DNA and bacteria belonging to Spiroplasmataceae and Leuconostocaceae, each represented by a single species, Spiroplasma sp. PL03 and Weissella cf. viridescens, respectively. Additionally, W. cf. viridescens was observed only in microsporidian-infected mosquitoes. More extensive research, including intensive and varied host sampling, as well as determination of metabolic activities based on quantitative methods, should be carried out to confirm our results.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Giulietta Minozzi ◽  
Filippo Biscarini ◽  
Emanuela Dalla Costa ◽  
Matteo Chincarini ◽  
Nicola Ferri ◽  
...  

The microbiome is now seen as an important resource to understand animal health and welfare in many species. However, there are few studies aiming at identifying the association between fecal microbiome composition and husbandry conditions in sheep. A wide range of stressors associated with management and housing of animals increases the hypothalamic–pituitary axis activity, with growing evidence that the microbiome composition can be modified. Therefore, the purpose of the present study was to describe the core microbiome in sheep, characterized using 16S rRNA gene sequencing, and to explore whether exposure to stressful husbandry conditions changed sheep hindgut microbiome composition. Sheep (n = 10) were divided in two groups: isolated group (individually separated for 3 h/day) and control group (housed in the home pen for the entire trial period). Sheep core microbiome was dominated by Firmicutes (43.6%), Bacteroidetes (30.38%), Proteobacteria (10.14%), and Verrucomicrobia (7.55%). Comparative results revealed few operational taxonomic units (OTUs) with significantly different relative abundance between groups. Chao1, abundance-based coverage estimator (ACE), and Fisher’s alpha indices did not show differences between groups. OTU-based Bray–Curtis distances between groups were not significant (p-value = 0.07). In conclusion, these results describing the core microbiome of sheep do not suggest a strong effect of stressful husbandry conditions on microbial composition.


2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolomics of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal rRNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatograph (UHPLC) based metabolomics were used to examine the fecal microbiome composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial species in the two groups showed remarkable differences at all levels. Metabolomic profiling revealed a concurrent difference, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, these metabolites in difference are have a strong correlation with the main microbe in genus level.Conclusions: Various factors related to diet and environmental conditions played a crucial role in shaping the gut microbiome composition and metabolomic profile. Through this study, we have established a baseline for a normal gut microbiome and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive specimens has an impact on their overall health and reproduction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Góngora ◽  
Kyle H. Elliott ◽  
Lyle Whyte

AbstractThe role of the gut microbiome is increasingly being recognized by health scientists and veterinarians, yet its role in wild animals remains understudied. Variations in the gut microbiome could be the result of differential diets among individuals, such as variation between sexes, across seasons, or across reproductive stages. We evaluated the hypothesis that diet alters the avian gut microbiome using stable isotope analysis (SIA) and 16S rRNA gene sequencing. We present the first description of the thick-billed murre (Uria lomvia) fecal microbiome. The murre microbiome was dominated by bacteria from the genus Catellicoccus, ubiquitous in the guts of many seabirds. Microbiome variation was explained by murre diet in terms of proportion of littoral carbon, trophic position, and sulfur isotopes, especially for the classes Actinobacteria, Bacilli, Bacteroidia, Clostridia, Alphaproteobacteria, and Gammaproteobacteria. We also observed differences in the abundance of bacterial genera such as Catellicoccus and Cetobacterium between sexes and reproductive stages. These results are in accordance with behavioural observations of changes in diet between sexes and across the reproductive season. We concluded that the observed variation in the gut microbiome may be caused by individual prey specialization and may also be reinforced by sexual and reproductive stage differences in diet.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1630 ◽  
Author(s):  
Daphne M. Rodriguez ◽  
Abby D. Benninghoff ◽  
Niklas D.J. Aardema ◽  
Sumira Phatak ◽  
Korry J. Hintze

The Western dietary pattern can alter the gut microbiome and cause obesity and metabolic disorders. To examine the interactions between diet, the microbiome, and obesity, we transplanted gut microbiota from lean or obese human donors into mice fed one of three diets for 22 weeks: (1) a control AIN93G diet; (2) the total Western diet (TWD), which mimics the American diet; or (3) a 45% high-fat diet-induced obesity (DIO) diet. We hypothesized that a fecal microbiome transfer (FMT) from obese donors would lead to an obese phenotype and aberrant glucose metabolism in recipient mice that would be exacerbated by consumption of the TWD or DIO diets. Prior to the FMT, the native microbiome was depleted using an established broad-spectrum antibiotic protocol. Interestingly, the human donor body type microbiome did not significantly affect final body weight or body composition in mice fed any of the experimental diets. Beta diversity analysis and linear discriminant analysis with effect size (LEfSe) showed that mice that received an FMT from obese donors had a significantly different microbiome compared to mice that received an FMT from lean donors. However, after 22 weeks, diet influenced the microbiome composition irrespective of donor body type, suggesting that diet is a key variable in the shaping of the gut microbiome after FMT.


2020 ◽  
Author(s):  
Yanju Bi ◽  
Runze Liu ◽  
Wenbo Ji ◽  
Lei Pan ◽  
Haidong Wei ◽  
...  

Abstract Background: Social contact in the early suckling period as an enriched social environment can reduce the aggressive behaviors of piglets at weaning regrouping, and improve their production performance and welfare. We speculated that the social environment could modulate the maturation of piglet intestinal microbiota at later growth stages. Therefore, we performed microbial 16S rRNA gene sequencing from fecal samples, collected at 16, 35, 42, and 63 days of age, to investigate the structure and function of intestinal microbiota in piglets that experienced early social contact. Results: The results showed that the litter weight of the piglets was not significantly different between the control (CON) and social contact (SC) groups at 35 days of age (P > 0.05), but the weight of piglets in the SC group significantly decreased at 63 days compared to the CON group (P < 0.05). While the proportion of Firmicutes were the most abundant bacterial phylum detected in both groups at all times, the proportion of Firmicutes and the Firmicutes-to-Bacteroides ratio were significantly higher in the SC group compared to the CON group and the proportion of Bacteroides was lower in the SC group compared to the CON group at 35, 42, and 63 days of age (P < 0.05). At the genus level, early social contact had a significant positive effect on the level of Lactobacillus at 35 and 42 days of age (P < 0.05), but a negative effect on Prevotella at 35, 42, and 63 days of age (P < 0.05). Furthermore, functional analysis of the microbial composition showed that the changes induced by early social contact mainly altered the relative abundance of metabolic and related pathways. From 35 days of age, the social contact notably had a negative effect on the abundance microbial pathways for protein digestion and absorption and lipid metabolism (P < 0.05). Conclusions: Early social contact truly changed the taxonomy of fecal microbiota in piglets, which in turn, impacted the potential for microbial function within the piglet intestine. At present, we speculate that providing continuous social contact negatively influences the nutrient metabolism for the growing piglets.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Karen J Ho ◽  
Liqun Xiong ◽  
Nathaniel Hubert ◽  
Anuradha Nadimpalli ◽  
Eugene B Chang ◽  
...  

Introduction: There is increasing evidence that the gut microbiome regulates susceptibility to certain diseases through systemic effects of microbe-derived metabolites. Sodium butyrate is a short chain fatty acid that is produced by microbial fermentation of dietary fiber and has known anti-proliferative and anti-migratory effects on vascular smooth muscle cells (VSMC). We hypothesized that perturbation of the gut microbiome with antibiotics would alter systemic serum butyrate concentration and impact neointimal hyperplasia after vascular injury. Methods: 10-wk-old male Lewis Inbred rats were treated with vancomycin (“vanco”) in the drinking water (0.5mg/mL) ± sodium butyrate (“buty”, 0.5mg/mL) for 4 wks prior to undergoing left carotid angioplasty. Serum butyrate concentration was assessed by gas chromatography. Gut microbial composition was assessed by 16S rRNA gene surveys of fecal samples. VSMC were treated with butyrate (0-5mM) and assessed for cell proliferation using cell counting, cell migration using a transwell assay, and cell cycle progression using FACS. Results: Post-angioplasty carotid arteries from vanco-treated rats developed 38% more neointima than controls (0.032±0.004mm2 vs. 0.044±0.003 mm2, P=0.02), but vanco+buty treatment prevented this increase in intimal area (0.035±0.004 mm2, P=.62 vs. control). Analysis of gut microbial communities revealed unique shifts in bacterial clustering by treatment group, which correlated with changes in serum butyrate levels, with the lowest butyrate level detected in vanco-treated rats (0.54±0.1 μmol/mL control, 0.017±0.1 μmol/mL vanco, 0.45±0.1 μmol/mL vanco+buty, P=.008). In vitro, butyrate treatment inhibited VSMC proliferation at 24-48 hrs in a dose-dependent manner, which correlated with induction of G0/G1 cell cycle arrest (P=.001) and a reduction in chemotaxis (P=.03). Conclusions: Oral vancomycin treatment induced a shift in the gut microbial community that was associated with decreased serum butyrate levels and increased neointimal hyperplasia, both of which were reversed by oral butyrate supplementation. These data demonstrate proof-of-concept that there is a correlation between gut microbial dysbiosis and susceptibility to neointimal hyperplasia.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Dong Wang ◽  
Qibin Qi ◽  
Zheng Wang ◽  
Mykhaylo Usyk ◽  
Daniela Sotres-Alvarez ◽  
...  

Introduction: Little is known about whether the effect of a healthy diet on diabetes mellitus (DM) is modified by the gut microbiome in human. Hypothesis: We hypothesize that the gut microbiome modifies the inverse association between the Mediterranean diet (MedDiet) and risk of DM. Methods: This study included 543 DM cases, 805 with impaired glucose tolerance (IGT) and 394 with normal glucose regulation (NGR) in adults 23-83yrs old from the HCHS/SOL. Fecal samples were profiled using 16s rRNA gene sequencing. We applied QIIME 2 to cluster sequences into OTUs and assign taxonomies, and PICRUSt to predict metagenomic gene functions. Adherence to the MedDiet was evaluated by a MedDiet index using the average of two 24-hr dietary recalls. We applied MaAsLin2 to quantify associations between the MedDiet index and microbial features with adjustment for confounding factors listed in the caption of Fig. 1. Results: MedDiet was associated with phylogenetically diverse, rare, and abundant gut microbes (Fig. 1a). For example, a higher MedDiet index was associated with a higher relative abundance of Faecalibacterium Prausnitzii [FDR-adjusted p (q) =0.002], but a lower relative abundance of Collinsella aerofaciens ( q =0.009). We found that several microbial functions related to plant-derived polysaccharide degradation such as fructuronate reductase ( q =0.02), and short-chain fatty acid fermentation such as butyryl-CoA dehydrogenase ( q =0.002) were enriched in participants with higher MedDiet index. We found that the inverse association between MedDiet and risk of DM was more pronounced in participants with greater abundance of Prevotella copri , but weaker in participants whose gut microbial communities were dominated by Bacteroides ( P interaction =0.02 for IGT/DM vs NGR, Fig. 1b). Conclusions: Adherence to the MedDiet is associated with diverse gut microorganisms and microbial functions. The inverse association between MedDiet and risk of DM might be modified by gut microbiome composition. 1


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1874 ◽  
Author(s):  
Angela Horvath ◽  
Marija Durdevic ◽  
Bettina Leber ◽  
Katharina di Vora ◽  
Florian Rainer ◽  
...  

Probiotics have been used in trials to therapeutically modulate the gut microbiome and have shown beneficial effects in cirrhosis. However, their effect on the microbiome of cirrhosis patients is not fully understood yet. Here, we tested the effects of a multispecies probiotic on microbiome composition in compensated cirrhosis. The gut microbiome composition of 58 patients with compensated cirrhosis from a randomized controlled trial who received a daily dose of multispecies probiotics or placebo for six months was analysed by 16S rRNA gene sequencing. Microbiome composition of patients who received probiotics was enriched with probiotic strains and the abundance of Faecalibacterium prausnitzii, Syntrophococcus sucromutans, Bacteroides vulgatus, Alistipes shahii and a Prevotella species was increased in the probiotic group compared to the placebo group. Patients who had microbiome changes in response to probiotic treatment also showed a significant increase in neopterin and a significant decrease in faecal zonulin levels after intervention, which was not observed in placebo-treated patients or patients with unchanged microbiome compositions. In conclusion, multispecies probiotics may enrich the microbiome of compensated cirrhotic patients with probiotic bacteria during a six-month intervention and beneficially change the residential microbiome and gut barrier function.


Sign in / Sign up

Export Citation Format

Share Document