scholarly journals Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy

2019 ◽  
Author(s):  
Dagmara Korona ◽  
Daniel J. H. Nightingale ◽  
Bertrand Fabre ◽  
Michael Nelson ◽  
Bettina Fischer ◽  
...  

AbstractThe Drosophila shaggy gene (sgg, GSK-3) encodes multiple protein isoforms with serine/threonine kinase activity and is a key player in diverse developmental signalling pathways. Currently it is unclear whether different Sgg proteoforms are similarly involved in signalling or if different proteoforms have distinct functions. We used CRISPR/Cas9 genome engineering to tag eight different Sgg proteoform classes and determined their localization during embryonic development. We performed proteomic analysis of the two major proteoform classes and generated mutant lines for both of these for transcriptomic and phenotypic analysis. We uncovered distinct tissue-specific localization patterns for all of the tagged proteoforms we examined, most of which have not previously been characterised directly at the protein level, including one proteoform initiating with a non-standard codon. Collectively this suggests complex developmentally regulated splicing of the sgg primary transcript. Further, affinity purification followed by mass spectrometric analyses indicate a different repertoire of interacting proteins for the two major proteoform classes we examined, one with ubiquitous expression (Sgg-PB) and one with nervous system specific expression (Sgg-PA). Specific mutation of these proteoforms shows that Sgg-PB performs the well characterised maternal and zygotic segmentations functions of the sgg locus, while Sgg-PA mutants show adult lifespan and locomotor defects consistent with its nervous system localisation. Our findings provide new insights into the role of GSK-3 proteoforms and intriguing links with the GSK-3α and GSK-3β encoded by independent vertebrate genes. Our analysis suggests that different protein isoforms generated by alternative splicing perform distinct functions.

2020 ◽  
Author(s):  
Dagmara Korona ◽  
Daniel Nightingale ◽  
Bertrand Fabre ◽  
Michael Nelson ◽  
Bettina Fischer ◽  
...  

AbstractThe Drosophila shaggy (sgg) gene encodes the major fly orthologue of Glycogen Synthase Kinase −3 (GSK-3), a key highly conserved kinase at the heart of many signalling pathways. The sgg locus is complex, encoding multiple protein isoforms that are expressed in distinct temporal and tissue-specific patterns across development. Its isoforms predominantly differ at the carboxy and amino termini due to the use of different transcriptional start sites and alternative splicing events that include internal and terminal exons. One interesting class of proteins isoforms is represented by the Sgg-PD class (Sgg46), three proteoforms that contain a large 582 amino acid N-terminal domain which contains recognition sites for caspase-mediated cleavage. Regulated cleavage at these sites by non-apoptotic caspases has previously been implicated in the regulation of Sgg activity in adult bristle development. Here, we take a genome engineering approach to introduce specific tags into this unique Sgg-PD exon and utilise these for localisation and protein interaction studies. We also generated new loss of function alleles and specific mutations in the caspase cleavage motifs. We find that loss of functions Sgg-PD class alleles are viable and fertile, but exhibit adult locomotor and bristle defects. Expression analysis of lines carrying tags on both sides of the caspase cleavage sites indicates that the cleavage is developmentally regulated during embryogenesis. Surprisingly, we found that in some cells, particularly embryonic hemocytes, the N-terminal domain released by caspase cleavage is retained while the polypeptide containing the conserved kinase domain is apparently lost. Transcriptomic analysis of embryos homozygous for the new caspase-insensitive allele indicates a role for Sgg-PD in the regulation of cytoskeletal and cell junction functions, which is supported by proteomics analysis using specific in locus tags to identify common and unique protein interaction partners with N- and C-terminal domains. Taken together, our work identifies new activities for the Sgg protein and uncovers unexpected roles for caspase cleavage in Sgg biology.


2019 ◽  
Vol 20 (9) ◽  
pp. 2200 ◽  
Author(s):  
Mikhail V. Trostnikov ◽  
Natalia V. Roshina ◽  
Stepan V. Boldyrev ◽  
Ekaterina R. Veselkina ◽  
Andrey A. Zhuikov ◽  
...  

GSK3 (glycogen synthase kinase 3) is a conserved protein kinase governing numerous regulatory pathways. In Drosophila melanogaster, GSK3 is encoded by shaggy (sgg), which forms 17 annotated transcripts corresponding to 10 protein isoforms. Our goal was to demonstrate how differential sgg transcription affects lifespan, which GSK3 isoforms are important for the nervous system, and which changes in the nervous system accompany accelerated aging. Overexpression of three sgg transcripts affected the lifespan in a stage- and tissue-specific way: sgg-RA and sgg-RO affected the lifespan only when overexpressed in muscles and in embryos, respectively; the essential sgg-RB transcript affected lifespan when overexpressed in all tissues tested. In the nervous system, only sgg-RB overexpression affected lifespan, causing accelerated aging in a neuron-specific way, with the strongest effects in dopaminergic neurons and the weakest effects in GABAergic neurons. Pan-neuronal sgg-RB overexpression violated the properties of the nervous system, including the integrity of neuron bodies; the number, distribution, and structure of mitochondria; cytoskeletal characteristics; and synaptic activity. Such changes observed in young individuals indicated premature aging of their nervous system, which paralleled a decline in survival. Our findings demonstrated the key role of GSK3 in ensuring the link between the pathology of neurons and lifespan.


2006 ◽  
Vol 291 (5) ◽  
pp. E891-E898 ◽  
Author(s):  
Theodore P. Ciaraldi ◽  
Deborah K. Oh ◽  
Louis Christiansen ◽  
Svetlana E. Nikoulina ◽  
Alice P. S. Kong ◽  
...  

Glycogen synthase kinase-3 (GSK-3) is a ubiquitous kinase implicated in both insulin action and adipogenesis. To determine how these multiple roles may relate to insulin resistance, we studied the regulation of GSK-3 protein expression and phosphorylation in skeletal muscle and isolated adipocytes from nonobese healthy control (HC), obese control (OC), and obese type 2 diabetic (OT2D) subjects. At baseline there were no differences in the GSK-3 protein expression in adipocytes. OC subjects underwent a 6-mo caloric restriction resulting in a 7% decrease in body mass index (BMI) and a 21% improvement in insulin-stimulated whole body glucose disposal rate (GDR). GSK-3α and GSK-3β expression decreased in adipocytes ( P < 0.05), whereas GSK-3α protein expression increased in skeletal muscle ( P < 0.05). OT2D subjects were treated with troglitazone or metformin for 3–4 mo. After troglitazone treatment GDR improved ( P < 0.05) despite an increase in BMI ( P < 0.05), whereas metformin had no significant effect on GDR. There was no significant change in GSK-3 expression in adipocytes following troglitazone, whereas both GSK-3α and -β were decreased in skeletal muscle ( P < 0.05). Metformin treatment had no significant impact on GSK-3 protein expression in either adipocytes or skeletal muscle. Neither treatment influenced GSK-3 serine phosphorylation in skeletal muscle or adipocytes. These results suggest that there is tissue specificity for the regulation of GSK-3 in humans. In skeletal muscle GSK-3 plays a role in control of metabolism and insulin action, whereas the function in adipose tissue is less clear.


2020 ◽  
Vol 20 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Carla S. Francisco ◽  
Clara L. Javarini ◽  
Iatahanderson de S. Barcelos ◽  
Pedro A.B. Morais ◽  
Heberth de Paula ◽  
...  

Background: Glycogen synthase kinase-3 (GSK-3) is involved in the phosphorylation and inactivation of glycogen synthase. GSK-3 inhibitors have been associated with a variety of diseases, including Alzheimer´s disease (AD), diabetes type II, neurologic disorders, and cancer. The inhibition of GSK-3β isoforms is likely to represent an effective strategy against AD. Objective: The present work aimed to design and synthesize coumarin derivatives to explore their potential as GSK-3β kinase inhibitors. Method: The through different synthetic methods were used to prepare coumarin derivatives. The GSK-3β activity was measured through the ADP-Glo™ Kinase Assay, which quantifies the kinasedependent enzymatic production of ADP from ATP, using a coupled-luminescence-based reaction. A docking study was performed by using the crystallographic structure of the staurosporine/GSK-3β complex [Protein Data Bank (PDB) code: 1Q3D]. Results: The eleven coumarin derivatives were obtained and evaluated as potential GSK-3β inhibitors. Additionally, in silico studies were performed. The results revealed that the compounds 5c, 5d, and 6b inhibited GSK-3β enzymatic activity by 38.97–49.62% at 1 mM. The other coumarin derivatives were tested at 1 mM, 1 µM, and 1 nM concentrations and were shown to be inhibitor candidates, with significant IC50 (1.224–6.875 µM) values, except for compound 7c (IC50 = 10.809 µM). Docking simulations showed polar interactions between compound 5b and Lys85 and Ser203, clarifying the mechanism of the most potent activity. Conclusion: The coumarin derivatives 3a and 5b, developed in this study, showed remarkable activity as GSK-3β inhibitors.


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 610
Author(s):  
Robin Park ◽  
Andrew L. Coveler ◽  
Ludimila Cavalcante ◽  
Anwaar Saeed

Glycogen synthase kinase-3 beta is a ubiquitously and constitutively expressed molecule with pleiotropic function. It acts as a protooncogene in the development of several solid tumors including pancreatic cancer through its involvement in various cellular processes including cell proliferation, survival, invasion and metastasis, as well as autophagy. Furthermore, the level of aberrant glycogen synthase kinase-3 beta expression in the nucleus is inversely correlated with tumor differentiation and survival in both in vitro and in vivo models of pancreatic cancer. Small molecule inhibitors of glycogen synthase kinase-3 beta have demonstrated therapeutic potential in pre-clinical models and are currently being evaluated in early phase clinical trials involving pancreatic cancer patients with interim results showing favorable results. Moreover, recent studies support a rationale for the combination of glycogen synthase kinase-3 beta inhibitors with chemotherapy and immunotherapy, warranting the evaluation of novel combination regimens in the future.


Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 149
Author(s):  
Shuwen Han ◽  
Chunlin Zhuang ◽  
Wei Zhou ◽  
Fener Chen

Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases, and inhibition of GSK-3β activity has become an attractive approach for the treatment of diabetes. Meridianin C, an indole-based natural product isolated from marine Aplidium meridianum, has been reported as a potent GSK-3β inhibitor. In the present study, applying the structural-based optimization strategy, the pyrimidine group of meridianin C was modified by introducing different substituents based on the 2-aminopyrimidines-substituted pyrazolo pyridazine scaffold. Among them, compounds B29 and B30 showed a much higher glucose uptake than meridianin C (<5%) and the positive compound 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, 16%), with no significant toxicity against HepG2 cells at the same time. Furthermore, they displayed good GSK-3β inhibitory activities (IC50 = 5.85; 24.4 μM). These results suggest that these meridianin C analogues represent novel lead compounds with therapeutic potential for diabetes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilandarage Menu Neelaka Molagoda ◽  
Jayasingha Arachchige Chathuranga C Jayasingha ◽  
Yung Hyun Choi ◽  
Rajapaksha Gedara Prasad Tharanga Jayasooriya ◽  
Chang-Hee Kang ◽  
...  

AbstractFisetin is a naturally occurring flavonoid that possesses several pharmacological benefits including anti-inflammatory activity. However, its precise anti-inflammatory mechanism is not clear. In the present study, we found that fisetin significantly inhibited the expression of proinflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Additionally, fisetin attenuated LPS-induced mortality and abnormalities in zebrafish larvae and normalized the heart rate. Fisetin decreased the recruitment of macrophages and neutrophils to the LPS-microinjected inflammatory site in zebrafish larvae, concomitant with a significant downregulation of proinflammatory genes, such as inducible NO synthase (iNOS), cyclooxygenase-2a (COX-2a), IL-6, and TNF-α. Fisetin inhibited the nuclear localization of nuclear factor-kappa B (NF-κB), which reduced the expression of pro-inflammatory genes. Further, fisetin inactivated glycogen synthase kinase 3β (GSK-3β) via phosphorylation at Ser9, and inhibited the degradation of β-catenin, which consequently promoted the localization of β-catenin into the nucleus. The pharmacological inhibition of β-catenin with FH535 reversed the fisetin-induced anti-inflammatory activity and restored NF-κB activity, which indicated that fisetin-mediated activation of β-catenin results in the inhibition of LPS-induced NF-κB activity. In LPS-microinjected zebrafish larvae, FH535 promoted the migration of macrophages to the yolk sac and decreased resident neutrophil counts in the posterior blood island and induced high expression of iNOS and COX-2a, which was accompanied by the inhibition of fisetin-induced anti-inflammatory activity. Altogether, the current study confirmed that the dietary flavonoid, fisetin, inhibited LPS-induced inflammation and endotoxic shock through crosstalk between GSK-3β/β-catenin and the NF-κB signaling pathways.


2021 ◽  
Vol 22 (6) ◽  
pp. 3233
Author(s):  
Christopher Kapitza ◽  
Rittika Chunder ◽  
Anja Scheller ◽  
Katherine S. Given ◽  
Wendy B. Macklin ◽  
...  

Multiple sclerosis (MS) has been considered to specifically affect the central nervous system (CNS) for a long time. As autonomic dysfunction including dysphagia can occur as accompanying phenomena in patients, the enteric nervous system has been attracting increasing attention over the past years. The aim of this study was to identify glial and myelin markers as potential target structures for autoimmune processes in the esophagus. RT-PCR analysis revealed glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and myelin basic protein (MBP) expression, but an absence of myelin oligodendrocyte glycoprotein (MOG) in the murine esophagus. Selected immunohistochemistry for GFAP, PLP, and MBP including transgenic mice with cell-type specific expression of PLP and GFAP supported these results by detection of (1) GFAP, PLP, and MBP in Schwann cells in skeletal muscle and esophagus; (2) GFAP, PLP, but no MBP in perisynaptic Schwann cells of skeletal and esophageal motor endplates; (3) GFAP and PLP, but no MBP in glial cells surrounding esophageal myenteric neurons; and (4) PLP, but no GFAP and MBP in enteric glial cells forming a network in the esophagus. Our results pave the way for further investigations regarding the involvement of esophageal glial cells in the pathogenesis of dysphagia in MS.


Author(s):  
Jingjing Cong ◽  
Bei Cheng ◽  
Jinyu Liu ◽  
Ping He

AbstractVascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document