Effect of ultrasonic vibration on interfacial reaction of Ni/Sn/Ni soldered joint

2019 ◽  
Vol 32 (2) ◽  
pp. 73-81
Author(s):  
Yun Liu ◽  
Weiyuan Yu ◽  
Xuemin Sun ◽  
Fengfeng Wang

Purpose This paper aims to investigate the effect of ultrasonic vibration (USV) on the evolution of intermetallic compounds (IMCs), grain morphology and shear strength of soldered Ni/Sn/Ni samples. Design/methodology/approach The Ni/Sn/Ni joints were obtained through ultrasonic-assisted soldering. The formation of IMCs, their composition, grain morphology and the fractured-surface microstructures from shear tests were characterized using scanning electron microscopy and energy-dispersive x-ray spectroscopy. Findings Without USV, a planar interfacial Ni3Sn4 layer was formed at the Ni/Sn interface, and a few Ni3Sn4 grains were distributed in the soldered joint. The morphology of these grains was needle-shaped. With USV, several grooves were formed at the interfacial Ni3Sn4 layer due to ultrasonic cavitation. Some deepened grooves led to “neck” connections at the roots of the Ni3Sn4 grains, which accelerated the strong detachment of Ni3Sn4 from the substrate. In addition, two types of Ni3Sn4 grains, needle-shaped and granular-shaped, were observed at the interface. Furthermore, the shear strength increased with longer USV time, which was attributed to the thinning of the interfacial IMC layers and dispersion strengthening from the Ni3Sn4 particles distributed evenly in the joint. Originality/value The novelty of the paper is the detailed study of the effect of USV on the morphology, size changes of interfacial IMC and joint strength. This provides guidance for the application of ultrasonic-assisted soldering in electronics packaging.

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Y.J. Zhang ◽  
Renzhong Guo ◽  
Yunhui Zhang ◽  
K. Liang

Purpose Based on the mechanical model of typical shear tests, this study aims to propose the test principle and method of freshwater/seawater ice adhesion shear strength of carbon ceramic brake pads for amphibious aircraft, designs and builds the test equipment, prepares the freshwater/seawater ice samples and completes the tests. Design/methodology/approach This study examines the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads and puts forward a test method for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads. Findings The obtained results examine the influence of the icing process, mechanism, temperature and freshwater/seawater on ice adhesion shear strength of carbon ceramic brake pads. The adhesion shear strength of frozen freshwater and of the seawater of Dalian, Qingdao, Fuzhou and Zhuhai on the surface of aircraft brake pads is measured at –10 to –50°C. It is found that the shear strength of freshwater increases first and then decreases with the decrease of temperature. The adhesion shear strength of seawater; however, increases mainly linear with the decrease of temperature. Originality/value The value of this paper is that the test method proposed and test results for the freshwater/seawater ice adhesion shear strength of amphibious aircraft brake pads provide technical support for the anti-icing design of amphibious aircraft brake devices.


2019 ◽  
Vol 31 (4) ◽  
pp. 221-226
Author(s):  
Behnam Hosseinzaei ◽  
Ali Reza Kiani Rashid

Purpose This paper aims to study the features of microstructures and mechanical properties of the joints which were produced by transient liquid phase method. The difference between phases in bonding region identified through metallography pictures and applying hardness and shear strength tests. Design/methodology/approach The bonding process was carried out at a temperature of 300°C for time durations ranging from 15 to 120 min. The scanning electron microscopy equipped with energy dispersive spectroscopy system and optical microscopy were used to examine microstructural characteristics, and mechanical properties of the joints were studied by applying microhardness and shear tests. The shear tests were conducted by a shear fixture which was mounted on the tensile machine. Findings The intermetallic compounds of the Cu6Sn5 −η and the Cu3Sn-ε were formed simultaneously in the bonding interface. Although the η-phase, which exhibits scallop-shaped morphology, grows very quickly, upon completion of the isothermal solidification stage, it turns into the ε-phase. The hardness of the bonding interface is significantly higher than that of the substrate. The shear results show that once the bonding process is complete, brittle fracture occurs. Moreover, a greater decrease in strength was observed when the ε-phase is the only phase in the bonding region. Originality/value The hardness number of the η-phase is higher than that of the ε-phase. The hardness numbers of the η-phase and the ε-phase are 894 and 689 HV, respectively. The mean shear strength values of the samples that were bonded at 300 °C for 15, 60 and 120 min were 11.7, 9.5 and 5.4 MPa, respectively.


2017 ◽  
Vol 29 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Martin Hirman ◽  
Frantisek Steiner

Purpose The purpose of this paper is to find an optimum between the quantity of solder paste and the desired properties of the soldered joint. A reduction of solder paste quantity is recognized as an opportunity to save money. On the other hand, the quantity of solder paste significantly influences the final properties of the soldered joint. The purpose is also to design recommendations for manufacturers of electronic assemblies. Design/methodology/approach The processing of the paper was initiated by a literature review. The expert analysis was the next step. The result of analysis was a fishbone diagram. Subsequently, the experiment was designed. Seven types and three volume of solder pastes and two aperture shapes of the stencil were used. The measured parameters were mechanical strength, electrical resistance, voids area and intermetallic compound (IMC) thicknesses. The results of the experiment were evaluated and recommendations for practice were defined. Findings The carried out research has confirmed the influence of solder paste quantity on the shear strength, electrical resistance, voids area and IMC thickness of solder joint. The article presents the results achieved for solders Sn42Bi58, Sn42Bi57.6Ag0.4, SnAg3.0Cu0.5, SnCu0.7Ag1.0NiGe, SnAg3.5Bi0.5In8.0 and Sn62.5Pb36.5Ag1.0. Reduction of solder paste quantity down to 74 per cent (i.e. one quarter of quantity) decreases mechanical shear strength less than 10 per cent. Recommendations relating to the optimal reduction of solder paste quantity have been designed for each solder paste. Originality/value Contribution of the paper is impact assessment of solder paste quantity on the properties of the soldered joint. It was carried out a large number of experiments and measurements which verify this effect. Such a comprehensive overview of the results is not yet available in the literature. Recommendations for manufacturers of electronic assemblies are also the benefit of article.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gui-sheng Gan ◽  
Liujie Jiang ◽  
Shiqi Chen ◽  
Yongqiang Deng ◽  
Donghua Yang ◽  
...  

Purpose Low-Ag SAC solder will lead to a series of problems, such as increased the melting range and declined the solderability and so on. These research studies do not have too much impact on the improvement of solders’ performance but were difficult to achieve satisfactory results. It is urgent to develop new soldering technology to avoid the bottleneck of lead-free solder. low-temperature-stirring soldering and ultrasonic-assisted soldering was developed in the authors’ early work, but slag inclusion and pore would gather and grow up to lead decreasing of the shear strength. In this paper, Cu/SAC0307 +Zn power/Cu joints with ultrasonic-assisted at low-temperature was successfully achieved. Design/methodology/approach 45um Zn-powder and SAC0307 No.4 solder powder were mixed to fill the Cu-Cu joint, and the content of Zn-powder were 0 and 5%, 7.5% and 10%, 12.5% and 15% respectively. During the soldering process under ambient atmosphere %252C the heating platform provided a constant 220%253 F and the ultrasonic vibrator applied a constant pressure of 4 MPa to the copper substrate. The soldering process was completed after holding 70 s at 300 W. Findings The Zn particles made the IMC at the joint interface and in the soldering seam from scallop-type Cu6Sn5 to flat-type Cu5Zn8. The shear strength of joints without Zn was only 12.43 MPa, the shear strength of joints with 10% Zn reached a peak of 34.25 MPa, and the shear strength of joints containing 10% Zn was 63.71% higher than that of joints without zinc particles, and then the shear strength decreased. In addition, with the increase of zinc content, the fracture mode of the joint changed from the brittle fracture of the original layered tears to the mixed tough and brittle fracture. Originality/value A new method that Zn micron-size powders and SAC0307 micron-size powders was mixed to fill the joint, and successfully achieved micro-joining of Cu/Cu under ultrasonic-assisted without flux at low-temperature.


2004 ◽  
Vol 95 (5) ◽  
pp. 372-376 ◽  
Author(s):  
Yiwang Bao ◽  
Haibin Zhang ◽  
Yanchun Zhou

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jianguo Cui ◽  
Keke Zhang ◽  
Di Zhao ◽  
Yibo Pan

AbstractThrough ultrasonic wave assisted Sn2.5Ag0.7Cu0.1RExNi/Cu (x = 0, 0.05, 0.1) soldering test and − 40 to 125 °C thermal shock test, the microstructure and shear properties of Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints under thermal cycling were studied by the SEM, EDS and XRD. The results show that the Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints with high quality and high reliability can be obtained by ultrasonic assistance. When the ultrasonic vibration power is 88 W, the ultrasonic-assisted Sn2.5Ag0.7Cu0.1RE0.05Ni/Cu solder joints exhibits the optimized performance. During the thermal cycling process, the shear strength of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had a linear relationship with the thickness of interfacial intermetallic compound (IMC). Under the thermal cycling, the interfacial IMC layer of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints consisted of (Cu,Ni)6Sn5 and Cu3Sn. The thickness of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints was linearly related to the square root of equivalent time. The growth of interfacial IMC of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints had an incubation period, and the growth of IMC was slow within 300 cycles. And after 300 cycles, the IMC grew rapidly, the granular IMC began to merge, and the thickness and roughness of IMC increased obviously, which led to a sharp decrease in the shear strength of the solder joints. The 0.05 wt% Ni could inhibit the excessive growth of IMC, improve the shear strength of solder joints and improve the reliability of solder joints. The fracture mechanism of ultrasonic-assisted Sn2.5Ag0.7Cu0.1RExNi/Cu solder joints changed from the ductile–brittle mixed fracture in the solder/IMC transition zone to the brittle fracture in the interfacial IMC.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1010
Author(s):  
Przemysław Snopiński ◽  
Tibor Donič ◽  
Tomasz Tański ◽  
Krzysztof Matus ◽  
Branislav Hadzima ◽  
...  

To date, numerous investigations have shown the beneficial effect of ultrasonic vibration-assisted forming technology due to its influence on the forming load, flow stress, friction condition reduction and the increase of the metal forming limit. Although the immediate occurring force and mean stress reduction are known phenomena, the underlying effects of ultrasonic-based material softening remain an object of current research. Therefore, in this article, we investigate the effect of upsetting with and without the ultrasonic vibrations (USV) on the evolution of the microstructure, stress relaxation and hardness of the AlMg3 aluminum alloy. To understand the process physics, after the UAC (ultrasonic assisted compression), the microstructures of the samples were analyzed by light and electron microscopy, including the orientation imaging via electron backscatter diffraction. According to the test result, it is found that ultrasonic vibration can reduce flow stress during the ultrasonic-assisted compression (UAC) process for the investigated aluminum–magnesium alloy due to the acoustic softening effect. By comparing the microstructures of samples compressed with and without simultaneous application of ultrasonic vibrations, the enhanced shear banding and grain rotation were found to be responsible for grain refinement enhancement. The coupled action of the ultrasonic vibrations and plastic deformation decreased the grains of AlMg3 alloy from ~270 μm to ~1.52 μm, which has resulted in a hardness enhancement of UAC processed sample to about 117 HV.


2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.


1984 ◽  
Vol 30 (106) ◽  
pp. 348-357 ◽  
Author(s):  
W.G. Nickling ◽  
L. Bennett

AbstractThe effect of ice content and normal load on the shear strength characteristics of a frozen coarse granular debris was investigated. 31 shear tests were carried out in a modified shearbox allowing a sample temperature of (–1.0 ± 0.2)° C and a load rate of 9.63 × 10−4 cm/min. The tests showed that as the ice content of the frozen debris was increased from 0% (under-saturated) to 25% (saturated), sample shear strength was markedly increased. In contrast, sample shear strength was reduced as ice content was increased from 25% (saturated) to 100% (supersaturated). The changes in shear strength with increasing ice content were attributed directly to changes in internal friction and the cohesive effects of the pore ice. The shear tests also indicate that shear strength increases with increasing normal load up to a critical limit. Above this limit, dilatancy is suppressed causing the shear strength to decrease or remain relatively constant with increased normal load.The stress-strain curves of the 31 tests indicated that samples with higher ice contents tended to reach peak strength (τP) with less displacement during shear. Moreover, the difference between τp and τr (residual strength) was lowest for pure polycrystalline ice and highest for ice-saturated samples. The Mohr-Coulomb failure envelopes displayed very distinctive parabolic curvilinearity. The degree of curvature is thought to be a function of ice creep at low normal loads and particle fracture and crushing at high normal loads.


Sign in / Sign up

Export Citation Format

Share Document