Design of Passive-Inspired Millimetre-Wave Integrated Devices in Low-Cost Bulk CMOS Technology

Author(s):  
Lisheng Chen ◽  
Lang Chen ◽  
Zeyu Ge ◽  
Roberto Gomez-Garcia ◽  
Xi Zhu
2003 ◽  
Vol 783 ◽  
Author(s):  
Charles E Free

This paper discusses the techniques that are available for characterising circuit materials at microwave and millimetre wave frequencies. In particular, the paper focuses on a new technique for measuring the loss tangent of substrates at mm-wave frequencies using a circular resonant cavity. The benefits of the new technique are that it is simple, low cost, capable of good accuracy and has the potential to work at high mm-wave frequencies.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Taikyu Kim ◽  
Cheol Hee Choi ◽  
Pilgyu Byeon ◽  
Miso Lee ◽  
Aeran Song ◽  
...  

AbstractAchieving high-performance p-type semiconductors has been considered one of the most challenging tasks for three-dimensional vertically integrated nanoelectronics. Although many candidates have been presented to date, the facile and scalable realization of high-mobility p-channel field-effect transistors (FETs) is still elusive. Here, we report a high-performance p-channel tellurium (Te) FET fabricated through physical vapor deposition at room temperature. A growth route involving Te deposition by sputtering, oxidation and subsequent reduction to an elemental Te film through alumina encapsulation allows the resulting p-channel FET to exhibit a high field-effect mobility of 30.9 cm2 V−1 s−1 and an ION/OFF ratio of 5.8 × 105 with 4-inch wafer-scale integrity on a SiO2/Si substrate. Complementary metal-oxide semiconductor (CMOS) inverters using In-Ga-Zn-O and 4-nm-thick Te channels show a remarkably high gain of ~75.2 and great noise margins at small supply voltage of 3 V. We believe that this low-cost and high-performance Te layer can pave the way for future CMOS technology enabling monolithic three-dimensional integration.


Author(s):  
Kosumov R.S. ◽  
Okazova Z.P.

The first bioassays for environmental monitoring were based on multicellular eukaryotic organisms, in particular fish and mammals. Because they were relatively expensive, time consuming and difficult, there was a need for alternative biological monitoring methods. It became necessary to develop and standardize toxicity tests based on prokaryotic (bacteria) or eukaryotic (protozoa, unicellular algae, yeast) microorganisms instead of higher organisms, which made it possible to quickly and inexpensively screen environmental samples for toxic and genotoxic effects. The first generation of bioassays was based on a variety of naturally sensitive microbes, while the second generation includes genetically modified microorganisms to achieve greater sensitivity and / or specificity. The next step forward was the combination of microbial cells, or parts of cells, with physicochemical detection elements, forming new integrated devices called "biosensors". The purpose of the research is to study the possibility of using microorganisms in bioindication of environmental pollution. The use of biological methods in environmental monitoring is essential to complement chemical analyzes with information on actual toxicity. Microorganisms are widely used as test objects for analyzes due to the simplicity and low cost of their cultivation. The use of microorganisms for the assessment of general toxicity or the detection of specific compounds is an important source of information on the state of the environment. Their use will significantly expand the range of environmental studies.


Proceedings ◽  
2019 ◽  
Vol 2 (13) ◽  
pp. 751
Author(s):  
Bart Vereecke ◽  
Els Van Besien ◽  
Deniz Sabuncuoglu Tezcan ◽  
Nick Spooren ◽  
Nicolaas Tack ◽  
...  

Recent developments in multispectral cameras have demonstrated how compact and low-cost spectral sensors can be made by monolithically integrating filters on top of commercially available image sensors. In this paper, the fabrication of a RGB + NIR variation to such a single-chip imaging system is described, including the integration of a metallic shield to minimize crosstalk, and two interference filters: a NIR blocking filter, and a NIR bandpass filter. This is then combined with standard polymer based RGB colour filters. Fabrication of this chip is done in imec’s 200 mm cleanroom using standard CMOS technology, except for the addition of RGB colour filters and microlenses, which is outsourced.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4663
Author(s):  
Rafel Perello-Roig ◽  
Jaume Verd ◽  
Sebastià Bota ◽  
Jaume Segura

Based on experimental data, this paper thoroughly investigates the impact of a gas fluid flow on the behavior of a MEMS resonator specifically oriented to gas sensing. It is demonstrated that the gas stream action itself modifies the device resonance frequency in a way that depends on the resonator clamp shape with a corresponding non-negligible impact on the gravimetric sensor resolution. Results indicate that such an effect must be accounted when designing MEMS resonators with potential applications in the detection of volatile organic compounds (VOCs). In addition, the impact of thermal perturbations was also investigated. Two types of four-anchored CMOS-MEMS plate resonators were designed and fabricated: one with straight anchors, while the other was sustained through folded flexure clamps. The mechanical structures were monolithically integrated together with an embedded readout amplifier to operate as a self-sustained fully integrated oscillator on a commercial CMOS technology, featuring low-cost batch production and easy integration. The folded flexure anchor resonator provided a flow impact reduction of 5× compared to the straight anchor resonator, while the temperature sensitivity was enhanced to −115 ppm/°C, an outstanding result compared to the −2403 ppm/°C measured for the straight anchored structure.


Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 444 ◽  
Author(s):  
Hao Yang ◽  
Xiaojiang Li ◽  
Guodong Wang ◽  
Jianbang Zheng

Polycrystalline lead selenide material that is processed after a sensitization technology offers the additional physical effects of carrier recombination suppression and carrier transport manipulation, making it sufficiently sensitive to mid-infrared radiation at room temperature. Low-cost and large-scale integration with existing electronic platforms such as complementary metal–oxide–semiconductor (CMOS) technology and multi-pixel readout electronics enable a photodetector based on polycrystalline lead selenide coating to work in high-speed, low-cost, and low-power consumption applications. It also shows huge potential to compound with other materials or structures, such as the metasurface for novel optoelectronic devices and more marvelous properties. Here, we provide an overview and evaluation of the preparations, physical effects, properties, and potential applications, as well as the optoelectronic enhancement mechanism, of lead selenide polycrystalline coatings.


2011 ◽  
Vol 403-408 ◽  
pp. 3769-3774 ◽  
Author(s):  
Asif Mirza ◽  
Nor Hisham Hamid ◽  
Mohd Haris Md Khir ◽  
Khalid Ashraf ◽  
M.T. Jan ◽  
...  

This paper reports design, modeling and simulation of MEMS based sensor working in dynamic mode with fully differential piezoresistive sensing for monitoring the concentration of exhaled carbon dioxide (CO2) gas in human breath called capnometer. CO2 being a very important biomarker, it is desirable to extend the scope of its monitoring beyond clinical use to home and ambulatory services. Currently the scope of capnometers and its adaption is limited by high cost, large size and high power consumption of conventional capnometers . In recent years, MEMS based micro resonant sensors have received considerable attention due to their potential as a platform for the development of many novel physical, chemical, and biological sensors with small size, low cost and low power requirements. The sensor is designed using 0.35 micron CMOS technology. CoventorWare and MATLAB have been used as simulation software. According to the developed model and simulation results the resonator has resonant frequency 57393 Hz and mass sensitivity of 3.2 Hz/ng. The results show that the longitudinal relative change of resistance is 0.24%/µm while the transverse relative change of resistance is -0.03%/µm.


Sign in / Sign up

Export Citation Format

Share Document