A 0.01 mm2 fully-differential 2-stage amplifier with reference-free CMFB using an architecture-switching-scheme for bandwidth variation

Author(s):  
Matthias Kuhl ◽  
Yiannos Manoli
2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


Author(s):  
Jorge Pérez Bailón ◽  
Jaime Ramírez-Angulo ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a Variable Gain Amplifier (VGA) designed in a 0.18 μm CMOS process to operate in an impedance sensing interface. Based on a transconductance-transimpedance (TC-TI) approach with intermediate analog-controlled current steering, it exhibits a gain ranging from 5 dB to 38 dB with a constant bandwidth around 318 kHz, a power consumption of 15.5 μW at a 1.8 V supply and an active area of 0.021 mm2.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1462
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Po-Jen Cheng

This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, the proposed method involves five-segment two-phase switching in each switching period, so the inverter switching times and power loss can be reduced by 33%. In addition, the produced PWM signal is asymmetric with respect to the center-symmetric triangular carrier wave, and the voltage command signal from the discrete-time current control output can be given in each half period of the PWM switching time interval, hence increasing the system bandwidth and allowing the motor drive system with better dynamic response. For the verification of the proposed SVPWM modulation scheme, the current control function in the stationary reference frame is also included in the design of the ASIC. The design is firstly verified by using PSIM simulation tool. Then, a DE0-nano field programmable gate array (FPGA) control board is employed to drive a 300W permanent-magnet synchronous motor (PMSM) for the experimental verification of the ASIC.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 188
Author(s):  
Žiga Korošak ◽  
Nejc Suhadolnik ◽  
Anton Pleteršek

The aim of this work is to tackle the problem of modulation wave shaping in the field of near field communication (NFC) radio frequency identification (RFID). For this purpose, a high-efficiency transmitter circuit was developed to comply with the strict requirements of the newest EMVCo and NFC Forum specifications for pulse shapes. The proposed circuit uses an outphasing modulator that is based on a digital-to-time converter (DTC). The DTC based outphasing modulator supports amplitude shift keying (ASK) modulation, operates at four times the 13.56 MHz carrier frequency and is made fully differential in order to remove the parasitic phase modulation components. The accompanying transmitter logic includes lookup tables with programmable modulation pulse wave shapes. The modulator solution uses a 64-cell tapped current controlled fully differential delay locked loop (DLL), which produces a 360° delay at 54.24 MHz, and a glitch-free multiplexor to select the individual taps. The outphased output from the modulator is mixed to create an RF pulse width modulated (PWM) output, which drives the antenna. Additionally, this implementation is fully compatible with D-class amplifiers enabling high efficiency. A test circuit of the proposed differential multi-standard reader’s transmitter was simulated in 40 nm CMOS technology. Stricter pulse shape requirements were easily satisfied, while achieving an output linearity of 0.2 bits and maximum power consumption under 7.5 mW.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Roberto Mondini ◽  
Ulrich Schubert ◽  
Ciaran Williams

Abstract In this paper we present a fully-differential calculation for the contributions to the partial widths H →$$ b\overline{b} $$ b b ¯ and H →$$ c\overline{c} $$ c c ¯ that are sensitive to the top quark Yukawa coupling yt to order $$ {\alpha}_s^3 $$ α s 3 . These contributions first enter at order $$ {\alpha}_s^2 $$ α s 2 through terms proportional to ytyq (q = b, c). At order $$ {\alpha}_s^3 $$ α s 3 corrections to the mixed terms are present as well as a new contribution proportional to $$ {y}_t^2 $$ y t 2 . Our results retain the mass of the final-state quarks throughout, while the top quark is integrated out resulting in an effective field theory (EFT). Our results are implemented into a Monte Carlo code allowing for the application of arbitrary final-state selection cuts. As an example we present differential distributions for observables in the Higgs boson rest frame using the Durham jet clustering algorithm. We find that the total impact of the top-induced (i.e. EFT) pieces is sensitive to the nature of the final-state cuts, particularly b-tagging and c-tagging requirements. For bottom quarks, the EFT pieces contribute to the total width (and differential distributions) at around the percent level. The impact is much bigger for the H →$$ c\overline{c} $$ c c ¯ channel, with effects as large as 15%. We show however that their impact can be significantly reduced by the application of jet-tagging selection cuts.


Sign in / Sign up

Export Citation Format

Share Document