Time delay of water contact with acrylic polyurethane super-hydrophobic surfaces

Author(s):  
Zhengyong Huang ◽  
Huanhuan Xia ◽  
Maochang Li ◽  
Jian Li
2012 ◽  
Vol 562-564 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Zhuang ◽  
Meng Meng Du ◽  
Heng Zhi Cai ◽  
Ya Jun Zhang ◽  
Da Ming Wu

A facile method for manufacturing super hydrophobic surfaces is presented using the stainless steel wire mesh as templates. The rough surfaces of polymers including polycarbonate, polypropylene and PMMA are prepared with hot embossing on different specifications of stainless steel wire mesh. Scanning electron microscopy (SEM) results reveal that the surfaces roughness of the polymers can be controlled by selecting templates. Contact angle measurement shows that the water contact angles(WCA) rise with the increase of surface roughness, especially, the water contact angle on the PC surfaces prepared with specifications of 635mesh screen can reach to 152.3°, alias super hydrophobic surfaces.


2011 ◽  
Vol 239-242 ◽  
pp. 2270-2273 ◽  
Author(s):  
Yong Feng Luo ◽  
Hai Yan Lang ◽  
Jin Liang ◽  
Guo Sheng Peng ◽  
You Hua Fan ◽  
...  

A facial chemical etching method was developed for fabricating stable super-hydrophobic surfaces on aluminum alloy foils. The microstructure and wettability of super-hydrophobic surfaces were characterized by scanning electron microscopy, water contact angle (CA) measurement, and optical methods. The surfaces of the modified aluminum alloy substrates exhibit superhydrophobicity, with a CA of 164.8°±1.6° and a water sliding angle of about 5°. The etched surfaces have binary structure consisting of the irregular microscale plateaus and caves in which there are the nanoscale block-like convexes and hollows.


2011 ◽  
Vol 9 (67) ◽  
pp. 313-327 ◽  
Author(s):  
Yang Shen ◽  
Guixue Wang ◽  
Xianliang Huang ◽  
Qin Zhang ◽  
Jiang Wu ◽  
...  

Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO x :H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve ( p )FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO x :H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Bichitra Nanda Sahoo ◽  
Balasubramanian Kandasubramanian ◽  
Amrutha Thomas

The present work reports a simple and effective way to produce hydrophobic foams with polyvinylidene fluoride (PVDF) and TiO2 by using a phase separation technique. This method involved the phase separation during the deposition of PVDF from its DMF solution with nonsolvent water in the presence of TiO2. The surface morphology of hydrophobic surfaces was characterized by Field Emission Scanning Electron Microscope (FESEM). The maximum water contact angle of 129° was observed. The results confirm that the surface texture of polymer composite exhibits mixture of microporous and nanoporous structure. The impact of TiO2 on the wettability property of polymer composite has been studied. The proposed methodology might find applications in the preparation of hydrophobic surfaces for industrial applications.


2017 ◽  
Vol 268 ◽  
pp. 87-91
Author(s):  
Syarinie Azmi ◽  
Ramli Arifin ◽  
Sib Krishna Ghoshal

Economically viable and maintenance free glass surfaces with improved hydrophobicity are highly demanding in the recent nanotechnology era. Deposition of pollutants and dirt on glass surface that not only causes visual obscurity but also damages the cultural heritages are still to be researched intensely. It is documented that excellent hydrophobic surfaces (with contact angle greater than 90o) can be achieved by controlling the surface wettability, where liquid droplets remain spherical on such surfaces. Selection of materials and the preparation method play a significant role towards such accomplishments. Stirred by this idea, we explored the feasibility of fabricating super-hydrophobic tellurite glass systems by facilely varying the compositions of different constituents. Highly transparent and thermally stable ternary tellurite glass system with chemical composition of (80-x)TeO2 – xSiO2 – 20ZnO, where x = 0.00 to 0.20 mol% are synthesized via conventional melt-quenching method. Samples are characterized using Atomic Force Microscopy (AFM) and contact angle measurements. The impact of SiO2 concentrations variation on the surface roughness, surface energy, and hydrophobic properties are inspected. Glass surface roughness as much as 9.885 nm is attained. The optimal value of water contact angle is discerned to be 101.02° for 0.1 mol% of SiO2 incorporation into the amorphous tellurite host matrix. Besides, the surface energy revealed an inverse proportionality to the water contact angle. This achieved contact angle (greater than 90°) makes this hydrophobic glass surface beneficial for diverse applications. It is established that the present glass composition may be prospective for the development of super-hydrophobic surfaces.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3546 ◽  
Author(s):  
Xiaojing Qian ◽  
Tao Tang ◽  
Huan Wang ◽  
Changan Chen ◽  
Junhong Luo ◽  
...  

Hydrophobic surfaces were successfully fabricated on pure nickel substrates by a one-step chemical etching process with different acidic solutions. The static water contact angle (SCA) of the etched Ni surfaces reached higher than 125°, showing excellent hydrophobicity. The examination of surface chemical compositions implied that there were almost no polar moieties on the surface after chemical etching, except part of the surface was oxidized. After chemical etching, the nickel surfaces became much rough with packed terrace-/crater-/thorn-like clusters. According to the analysis of surface composition and morphology, the hydrophobicity was evidently attributed to the rough microstructures on the etched Ni surface. The best hydrophobicity on Ni surface was produced with the SCAs as high as 140.0° by optimizing the etching time and etchants. The results demonstrate that it is possible to construct hydrophobic surfaces on hydrophilic substrates by tailoring the surface microstructure using a simple chemical etching process without any further hydrophobic modifications by low surface energy materials.


Author(s):  
Satoshi Ogata ◽  
Keigo Shimizu

We studied the effect of textured hydrophobic surfaces on drag reduction in Newtonian laminar flow through a rectangular channel. Fine fabrication was given to the test wall surfaces so that the groove pattern and the groove area ratio may be changed methodically, and their surfaces are coated with PTFE. Drag reduction was estimated by pressure loss measurement in 0.5×5 mm and 12×12 mm channels. Visualization experiment was carried out to reveal a mechanism of drag reduction from the form of air-water interface standpoint. A series of experiments showed that the air-water contact area ratio and the air layer thickness influence the drag reduction, and the maximum drag reduction ratio is 15.6%.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 352 ◽  
Author(s):  
Luigi Calabrese ◽  
Amani Khaskhoussi ◽  
Salvatore Patane ◽  
Edoardo Proverbio

Superhydrophobicity is one of the most required surface properties for a wide range of application such as self-cleaning, anti-corrosion, oil-water separation, anti-icing, and anti-bioadhesion. Recently, several methods have been developed to produce nature inspired super-hydrophobic surfaces. Nevertheless, these methods require a complicated process and expensive equipment. In order to overcome these issues, we propose three different methods to obtain nature-inspired super-hydrophobic surfaces: short-term treatment with boiling water, HF/HCl and HNO3/HCl concentrated solution etching. Afterwards, a thin layer of octadecylsilane was applied by in situ polymerization on all pre-treated surfaces. Eventually, all substrates were dried for 3 h at 100 °C to complete the silane curing. Scanning electron microscopy (SEM), contact angle measuring system and atomic force microscope (AFM) were used to characterize the surfaces. Surface morphology analysis showed that each method results in a specific dual hierarchical nano-/micro-structure. The corresponding water contact angles ranged from 160° to nearly 180°. The best results were observed for HF etched Al 6082 surface were water contact angle above 175° was achieved. Furthermore, a scheme able to assess the relationship between hydrophobic behavior and surface morphology was finally proposed.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Pran Krisna Saha ◽  
Rony Mia ◽  
Yang Zhou ◽  
Taosif Ahmed

AbstractHighly hydrophobic surfaces exhibit a remarkable feature in the repellency of oil and water. However, the relatively complex preparation process, high costs, and harmful compounds have largely limited their applications. This research aim is to fabricate hydrophobic nonwoven fabrics with low-cost and nontoxic materials. Despite various wettable materials, nonwoven cotton fabric material bearing hydrophobic surfaces has been received significant attention. This is mainly owing to its easy handling, high flexibility, environment friendly, low cost, biodegradability, high efficiency, and easily scalable fabrication. In this study, a simple chemical modification method using hexadecyltrimethoxysilane (HDTMS) with ethanol which is a better method in comparison with other methods since it is an inexpensive, simple method, and offers an easy adjustment of chemical composition required for a surface to show hydrophobic behaviors. The wetting behavior of cotton samples was investigated by water contact angle measurement. The best result comes from 2 ml HDTMS with 40 ml ethanol at 60 °C. The result shows that the treated cotton fabrics exhibited excellent chemical stability and outstanding non-wettability with the WCA of 126 ± 2°. It also shows that standard oil and water repellency, which offers an opportunity to accelerate the large-scale production of hydrophobic textile materials for new industrial applications. Graphic abstract


2021 ◽  
Vol 18 (1) ◽  
pp. 77-91
Author(s):  
Chengjuan Yang ◽  
Weiran Cao ◽  
Zhen Yang ◽  
Meng Wang ◽  
Xiubing Jing ◽  
...  

AbstractThis paper presents a new and safe method of fabricating super-hydrophobic surface on NiTi Shape Memory Alloy (SMA), which aims to further improve the corrosion resistance performance and biocompatibility of NiTi SMA. The super-hydrophobic surfaces with Water Contact Angle (WCA) of 155.4° ± 0.9° and Water Sliding Angle (WSA) of 4.4° ± 1.1° were obtained by the hybrid of laser irradiation and polydimethylsiloxane (PDMS) modification. The forming mechanism was systematically revealed via Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The anti-corrosion of samples was investigated in Simulated Body Fluid (SBF) via the potentiodynamic polarization (PDP) and Electrochemical Impedance Spectroscopy (EIS) tests. PDMS super-hydrophobic coatings showed superior anti-corrosion performance. The Ni ions release experiment was also conducted and the corresponding result demonstrated that the super-hydrophobic samples effectively inhibited the release of Ni ions both in electrolyte and SBF. Besides, biocompatibility was further analyzed, indicating that the prepared super-hydrophobic surfaces present a huge potential advantage in biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document