Hormone manipulation to overcome a major barrier in male catfish spawning: The role of oxytocin augmentation in inducing voluntary captive spawning

2020 ◽  
Vol 52 (1) ◽  
pp. 51-64
Author(s):  
Himanshu Priyadarshi ◽  
Rekha Das ◽  
Atom Arun Singh ◽  
Arun Bhai Patel ◽  
Pramod Kumar Pandey
2018 ◽  
Vol 20 (1) ◽  
pp. 78 ◽  
Author(s):  
Huiju Lee ◽  
Yoon Choi

Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer’s disease, and the role of several other signaling molecules.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009342
Author(s):  
Laura C. Ristow ◽  
J. Muse Davis

Although we have recognized cryptococcosis as a disease entity for well over 100 years, there are many details about its pathogenesis which remain unknown. A major barrier to better understanding is the very broad range of clinical and pathological forms cryptococcal infections can take. One such form has been historically called the cryptococcal granuloma, or the cryptococcoma. These words have been used to describe essentially any mass lesion associated with infection, due to their presumed similarity to the quintessential granuloma, the tubercle in tuberculosis. Although clear distinctions between tuberculosis and cryptococcal disease have been discovered, cellular and molecular studies still confirm some important parallels between these 2 diseases and what we now call granulomatous inflammation. In this review, we shall sketch out some of the history behind the term “granuloma” as it pertains to cryptococcal disease, explore our current understanding of the biology of granuloma formation, and try to place that understanding in the context of the myriad pathological presentations of this infection. Finally, we shall summarize the role of the granuloma in cryptococcal latency and present opportunities for future investigations.


Psicologia ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 35-48
Author(s):  
Teresa Maria Nascimento ◽  
Mauro Bianchi

TB stigma constitutes a major barrier to disease control and social distress. This study aims to understand better the inherent social processes on the perception of emotions. Thus far, the specific role of TB stigma in this respect was not tested. We hypothesize that individuals in TB treatment (vs. a control non-clinical group) would identify more negative emotions in the faces of others, specifically rejecting emotions (e.g., disgust) when preoccupied with TB stigma. Two groups of participants completed a questionnaire with 23  faces, identified the emotions portrayed in the pictures, and reported their level of Stigma Consciousness, Interpersonal-Rejection Related to Stigma, and Rejection Sensitivity. Results show that the two groups significantly differ in their perceptions of negative emotions: participants in treatment identify less disgust and more sadness, fear, and anger versus the control group. Findings are discussed concerning the literature on stigma and its consequences.


2021 ◽  
Author(s):  
Gregory A. Viglianti ◽  
Vicente Planelles ◽  
Timothy M. Hanley

Macrophages are infected by HIV-1 in vivo and contribute to both viral spread and pathogenesis. Recent human and animal studies suggest that HIV-1-infected macrophages serve as a reservoir that contributes to HIV-1 persistence during anti-retroviral therapy. The ability of macrophages to serve as persistent viral reservoirs is likely influenced by the local tissue microenvironment, including interactions with pathogenic and commensal microbes. Here we show that the sexually transmitted pathogen Neisseria gonorrhoeae (GC) and the gut-associated microbe Escherichia coli (E. coli), which encode ligands for both Toll-like receptor 2 (TLR2) and TLR4, repressed HIV-1 replication in macrophages and thereby induced a state reminiscent of viral latency. This repression was mediated by signaling through TLR4 and the adaptor protein TRIF and was associated with increased production of type I interferons. Inhibiting TLR4 signaling, blocking type 1 interferon, or knocking-down TRIF reversed LPS- and GC-mediated repression of HIV-1. Finally, the repression of HIV-1 in macrophages was associated with the recruitment of interferon regulatory factor 8 (IRF8) to the interferon stimulated response element (ISRE) downstream of the 5’ HIV-1 long terminal repeat (LTR). Our data indicate that IRF8 is responsible for repression of HIV-1 replication in macrophages in response to TRIF-dependent signaling during GC and E. coli co-infection. These findings highlight the potential role of macrophages as HIV-1 reservoirs as well as the role of the tissue microenvironment and co-infections as modulators of HIV-1 persistence. IMPORTANCE The major barrier toward the eradication of HIV-1 infection is the presence of a small reservoir of latently infected cells, which include CD4+ T cells and macrophages that escape immune-mediated clearance and the effects of anti-retroviral therapy. There remain crucial gaps in our understanding of the molecular mechanisms that lead to transcriptionally silent or latent HIV-1 infection of macrophages. The significance of our research is in identifying microenvironmental factors, such as commensal and pathogenic microbes, that can contribute to the establishment and maintenance of latent HIV-1 infection in macrophages. It is hoped that identifying key processes contributing to HIV-1 persistence in macrophages may ultimately lead to novel therapeutics to eliminate latent HIV-1 reservoirs in vivo.


Author(s):  
Zhenchuan Liu ◽  
Shaorui Gu ◽  
Kaiqin Wu ◽  
Lei Li ◽  
Chenglai Dong ◽  
...  

Abstract Background Cisplatin-based chemotherapy is a mainstay systematic therapy for advanced esophageal squamous cell carcinoma (ESCC), and cisplatin resistance, which is not uncommon, is the major barrier to improving patient outcomes. Circular RNAs (circRNAs) are novel noncoding RNAs that are implicated in cancer progression, but their involvement in modulating cisplatin responsiveness in ESCC remains unknown. Methods Bioinformatics analysis was used to profile and identify the circRNAs involved in cisplatin responsiveness in ESCC. The chemosensitive role of cDOPEY2 was confirmed both in vitro and in vivo. The molecular mechanism of cDOPEY2 was investigated by mass spectrometry, immunoprecipitation, and ubiquitination analyses. Results We report that a novel circRNA (cDOPYE2, hsa_circ_0008078) was markedly downregulated in cisplatin-resistant ESCC cells (ESCC-CR) compared with parental chemosensitive cells. Re-expression of cDOPEY2 substantially enhanced the cell-killing ability of cisplatin by augmenting the apoptotic process in ESCC-CR cells, which was achieved by decreasing the abundance of the antiapoptotic protein Mcl-1. Mechanistically, we showed that cDOPEY2 acted as a protein scaffold to enhance the interaction between the cytoplasmic polyadenylation element binding protein (CPEB4) and the E3 ligase TRIM25, which in turn facilitated the ubiquitination and degradation of CPEB4. The increased Mcl-1 expression in ESCC-CR cells was dependent on the binding of CPEB4 to its untranslated mRNA, and depletion of CPEB4 mediated by cDOPEY2 reversed this effect. Rescue experiments confirmed that the critical role of cDOPEY2 in maintaining cisplatin sensitivity was dependent on the depletion of CEPB4 and its downstream target Mcl-1. Clinical and in vivo data further corroborated the significant relevance of cDOPEY2 to cisplatin responsiveness in ESCC. Conclusions We provide evidence that cDOPEY2 inhibits CPEB4-mediated Mcl-1 translation by promoting the ubiquitination and degradation of CPEB4 to alleviate cisplatin resistance, indicating that cDOPEY2 may serve as a valuable biomarker and potential therapeutic target in ESCC.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 114 ◽  
Author(s):  
Camilla Paoletti ◽  
Carla Divieto ◽  
Valeria Chiono

The irreversible loss of functional cardiomyocytes (CMs) after myocardial infarction (MI) represents one major barrier to heart regeneration and functional recovery. The combination of different cell sources and different biomaterials have been investigated to generate CMs by differentiation or reprogramming approaches although at low efficiency. This critical review article discusses the role of biomaterial platforms integrating biochemical instructive cues as a tool for the effective generation of functional CMs. The report firstly introduces MI and the main cardiac regenerative medicine strategies under investigation. Then, it describes the main stem cell populations and indirect and direct reprogramming approaches for cardiac regenerative medicine. A third section discusses the main techniques for the characterization of stem cell differentiation and fibroblast reprogramming into CMs. Another section describes the main biomaterials investigated for stem cell differentiation and fibroblast reprogramming into CMs. Finally, a critical analysis of the scientific literature is presented for an efficient generation of functional CMs. The authors underline the need for biomimetic, reproducible and scalable biomaterial platforms and their integration with external physical stimuli in controlled culture microenvironments for the generation of functional CMs.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4533-4533
Author(s):  
Ying Wang ◽  
Shan He ◽  
Yongnian Liu ◽  
Robert Hooper ◽  
Hongshuang Yu ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a major barrier for the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT). We have identified the central role of the histone methyltransferase Ezh2 in regulating allogeneic T-cell expansion, differentiation and function. Conditional loss of Ezh2 in donor T cells inhibits GVHD in mice due to the inability of alloreactive T cells to persist. However, the molecular mechanism by which Ezh2 deficiency causes alloreactive T cell death remains unknown. Here we demonstrate that genetic deletion of Stromal Interaction Molecule (Stim) 1, a dynamic endoplasmic reticulum Ca2+ sensor and regulator of Ca2+ signaling, rescues antigen-activated Ezh2-null (Ezh2-/-) T cells, leading to restored persistence of alloreactive effector T cells in mice and severe GVHD. Using RNA-sequencing analysis, we found Ezh2-deficiency led to the upregulation of multiple genes (e.g., Ifng, Prf1, Ccl5, Ccl4, Upp1 and Spp1) known to be regulated by Ca2+ signals through calcineurin (CN), the primary target of the immunosuppressant cyclosporine A (CsA). This reverse correlation between Ezh2 inhibition and CsA-treatment for gene expression suggests that Ezh2 may antagonize Ca2+ signaling in activated T cells. Calcium signaling assays revealed higher cytosolic Ca2+ uptake and more frequent Ca2+ oscillations in Ezh2-/- T cells. Moreover, Ezh2-/- T cells exhibited significantly increased polarization of Stim1 and Orai1 in the cellular membrane. These data reveal an unexpected role of Ezh2 as a negative regulator of Ca2+ entry, thereby serving as a 'brake' for Ca2+ signaling. Using the C57BL/6 (B6) into Balb/c mouse GVHD model, we found significantly fewer Ezh2-/- or Stim1-/- IFN-g-secreting effector T cells compared to the WT counterparts on day 8 or 14 post-transplantation. In contrast, deleting Stim1 from Ezh2-/- donor T cells rescued the cells in the spleen and liver, producing even more donor T cells and IFN-g-secreting effector T cells compared to WT T cells and inducing severe GVHD. We further examined the cell autonomous effect of Stim1 deletion on the rescue of Ezh2-/- T cells by mixing WT T cells (B6/SJL, CD45.1) with Ezh2- and/or Stim1- conditional knockout T cells (i.e., Ezh2-/-, Stim1-/- or Ezh2-/- x Stim1-/- B6 T cells (CD45.2)) at a ratio of 1:1 before transferring into the Balb/c mice. While loss of either Ezh2 or Stim1 led to lower frequency of IFN-g+IL-2+ effector T cells, combined deletion of both genes restored the frequency and number of IFN-g+IL-2+ effector T cells to that of WT T cells. Thus, Stim1-mediated Ca2+ signals are crucial for mediating cell death in alloantigen-driven Ezh2-/- effector T cells. To further determine whether the inhibition of CN-NFAT contributes to the rescue, we treated T cell receptor (TCR)-activated Ezh2-/- T cells with CsA or the calcium release-activated channel specific inhibitor BTP2, respectively, in vitro. While BTP2 dramatically improved the survival of IFN-g-producing effector T cells, CsA did not, suggesting the involvement of CN-NFAT-independent pathways. Ca2+ overload is known to impair mitochondrial function and cause massive cell death. As compared to TCR-activated WT T cells, activated Ezh2-/- T cells displayed significantly less ATP, lower mitochondrial membrane potential, enlarged mitochondrial mass, and decreased capacity to upregulate oxidative phosphorylation. Stim1 deletion largely reversed the metabolic defect in Ezh2-/- T cells, indicating the critical role of mitochondrial metabolism in rescuing these T cells. Considered together, our findings identify the remarkable coordination between Ezh2- and Stim1-regulated effector T cell persistence. As such, these investigations may lead to new approaches to inhibit GVHD, with broad implications to defining fundamental mechanisms of T cell differentiation for control of adaptive immunity, such as tumor immunity and autoimmunity. Disclosures Reshef: Incyte: Consultancy; Takeda Pharmaceuticals: Consultancy; Pfizer: Consultancy; Kite Pharma: Consultancy; Atara Biotherapeutics: Consultancy; Bristol-Myers Squibb: Consultancy.


Author(s):  
Banban Li ◽  
Ruinan Jia ◽  
Wei Li ◽  
Ying Zhou ◽  
Dongmei Guo ◽  
...  

BackgroundChemoresistance is emerging as a major barrier to successful treatment in acute myeloid leukemia (AML), and bone marrow stromal cells (BMSCs) protect leukemia cells from chemotherapy eventually leading to recurrence. This study was designed to investigate the role of p21-activated kinase 1 (PAK1) in AML progression and chemosensitivity, highlighting the mechanism of stroma-mediated chemoresistance.MethodsThe GEPIA and TCGA datasets were used to analyze the relationship between PAK1 mRNA expression and various clinical parameters of AML patients. Cell proliferation and apoptosis were examined to evaluate the role of PAK1 on chemosensitivity in AML by silencing PAK1 with shRNA or small molecular inhibitor. Human BMSC (HS-5) was utilized to mimic the leukemia bone marrow microenvironment (BMM) in vitro, and co-culture model was established to investigate the role of PAK1 in BMSC-mediated drug resistance.Resultsp21-activated kinase 1 high expression was shown to be associated with shorter overall survival in AML patients. The silence of PAK1 could repress cell proliferation, promote apoptosis, and enhance the sensitivity of AML cells to chemotherapeutic agents. More importantly, BMSCs induced PAK1 up-regulation in AML cells, subsequently activating the ERK1/2 signaling pathway. The effect of BMSC-mediated apoptotic-resistance could be partly reversed by knock down of PAK1.Conclusionp21-activated kinase 1 is a potential prognostic predictor for AML patients. PAK1 may play a pivotal role in mediating BMM-induced drug resistance, representing a novel therapeutic target in AML.


2019 ◽  
Vol 28 (11) ◽  
pp. 874 ◽  
Author(s):  
Courtney A. Schultz ◽  
Sarah M. McCaffrey ◽  
Heidi R. Huber-Stearns

Prescribed fire is an important management tool on US federal lands that is not being applied at the necessary or desired levels. We investigated the role of policy barriers and opportunities for prescribed fire application on US Forest Service and Bureau of Land Management lands in the western United States. We conducted 54 semi-structured interviews with federal and state land managers and air quality regulators, and with several non-federal partners. We found that lack of adequate capacity and funding were the most commonly cited barriers to increasing application of prescribed fire. Interviewees also emphasised that owing to a lack of incentives and the prevalence of risk aversion at multiple agency levels, active prescribed fire programs depend on the leadership and commitment of individual decision-makers and fire managers. Successful approaches also rely on collaborative forums and positions that allow communication, problem-solving and resource sharing among federal and state partners, and that facilitate dialogue between air-quality and land managers. We did not find that air quality regulation was consistently cited as a major barrier, except in specific locations. Our findings highlight the importance of contextualised investigation into policy barriers and the role of collaborative and multilevel governance approaches for addressing complex land management challenges.


2021 ◽  
Vol 21 (2) ◽  
pp. 52-64
Author(s):  
Eric Funabashi

This article explores the role of cookbooks in supporting the creation of new eating habits and identities during the Japanese immigration to Brazil. When Japanese immigrants first arrived in Brazil in 1908, the local food represented a major barrier to their acclimation in the new country. Unknown ingredients and disgust for popular seasonings like pork fat and garlic prevented Japanese immigrants from preparing familiar meals and caused drastic changes to their diets. After nearly three decades improvising meals, Japanese immigrants started to better incorporate Brazilian ingredients into their eating habits when an alliance between the Brazilian and the American governments in 1937, and Japan’s defeat in World War II pressured them to adopt Brazil as their new home country. As Japanese immigrants internalized a new mindset focused on making Brazil their permanent home, cookbooks written by immigrants not only taught them how to use Brazilian ingredients, but also reflected immigrants’ improvements in building a higher-quality lifestyle. This article analyzes cookbooks written by Japanese immigrants in tandem with private diaries and recipes to examine the complex process of creating new eating habits as well as new Brazilian Nikkei identities.


Sign in / Sign up

Export Citation Format

Share Document