Digestive evaluation of soy isolate protein as affected by heat treatment and soy oil inclusion in broilers at an early age

2016 ◽  
Vol 87 (10) ◽  
pp. 1291-1297 ◽  
Author(s):  
Xianglun Zhang ◽  
Peng Lu ◽  
Wenyue Xue ◽  
Dawei Wu ◽  
Chao Wen ◽  
...  
Keyword(s):  
Soy Oil ◽  
Author(s):  
Girts Bumanis ◽  
Nikolajs Toropovs ◽  
Laura Dembovska ◽  
Diana Bajare ◽  
Aleksandrs Korjakins

The influence of heat treatment during curing process of ultra high strength concrete (UHSC) was researched. Four different heat treatment temperatures ranging from 50 to 200 °C were studied and compared to the reference temperature regime (20 °C).  Two series of heat treatment were applied: (a) at the early age of UHSC (3 days) and (b) after 27 days of standard curing regime in water at 20 °C. Concrete compressive strength was tested at the early age (4 days) and at the age of 28 days. The water absorption and water penetration under pressure were tested for heat treated and untreated UHSC specimens. SEM and XRD investigations of the studied samples were performed. UHSC with the strength of 123 MPa at the age of 28 days was tested at the standard curing conditions. Results indicate that early age curing at elevated temperature increases early compressive strength from 123 to 189% while at the age of 28 days the compressive strength was only 95 to 117% from reference and depends on the heat treatment regime. The heat treatment of UHSC at the age of 27 days was beneficial with regard to the strength development. Heat-treated UHSC provided compressive strength gain from 112 to 124% from reference. The water absorption for all UHSC specimens was from 2.6 to 3.2 wt.% and it was not affected by the heat treatment. The calcite was detected with XRD in heat treated UHSC samples which indicates the carbonization of Portlandite. This could explain the strength gain of heat-treated samples and the reason for slow compressive strength increase in the case of early heat treatment application. SEM images reveal dense structure and unreacted silica fume particles. The early heat treatment initiated high early strength but the strength of concrete reduced at the age of 28 days comparing to the early strength; therefore late heat application was beneficial for strength gain of the UHSC.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 225 ◽  
Author(s):  
Татіаna Kugaevska ◽  
Viktor Sopov ◽  
Volodymyr Shulgin

Reducing energy consumption in the manufacture of concrete products of factory production is always an urgent task. The use of heated air for creating soft modes of heat treatment of concrete products is proposed. The influence of soft heat treatment modes on the dynamics of the concrete samples strength at an early age has been established. The expediency of using soft heat treatment modes with the obligatory use of hardening accelerators is shown. With this approach, the heat treatment of concrete samples with heated air contributes to increasing the concrete compression strength in the early term of hardening: at the age of 1 day 1.94 ... 2.12 times; at the age of 3 days 1,25 ... 1,41 times. 


Author(s):  
R. M. Anderson

Aluminum-copper-silicon thin films have been considered as an interconnection metallurgy for integrated circuit applications. Various schemes have been proposed to incorporate small percent-ages of silicon into films that typically contain two to five percent copper. We undertook a study of the total effect of silicon on the aluminum copper film as revealed by transmission electron microscopy, scanning electron microscopy, x-ray diffraction and ion microprobe techniques as a function of the various deposition methods.X-ray investigations noted a change in solid solution concentration as a function of Si content before and after heat-treatment. The amount of solid solution in the Al increased with heat-treatment for films with ≥2% silicon and decreased for films <2% silicon.


Author(s):  
E. Bischoff ◽  
O. Sbaizero

Fiber or whisker reinforced ceramics show improved toughness and strength. Bridging by intact fibers in the crack wake and fiber pull-out after failure contribute to the additional toughness. These processes are strongly influenced by the sliding and debonding resistance of the interfacial region. The present study examines the interface in a laminated 0/90 composite consisting of SiC (Nicalon) fibers in a lithium-aluminum-silicate (LAS) glass-ceramic matrix. The material shows systematic changes in sliding resistance upon heat treatment.As-processed samples were annealed in air at 800 °C for 2, 4, 8, 16 and 100 h, and for comparison, in helium at 800 °C for 4 h. TEM specimen preparation of as processed and annealed material was performed with special care by cutting along directions having the fibers normal and parallel to the section plane, ultrasonic drilling, dimpling to 100 pm and final ionthinning. The specimen were lightly coated with Carbon and examined in an analytical TEM operated at 200 kV.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D. Matlock

Thermomechanically induced strain is a key variable producing accelerated carbide precipitation, sensitization and stress corrosion cracking in austenitic stainless steels (SS). Recent work has indicated that higher levels of strain (above 20%) also produce transgranular (TG) carbide precipitation and corrosion simultaneous with the grain boundary phenomenon in 316 SS. Transgranular precipitates were noted to form primarily on deformation twin-fault planes and their intersections in 316 SS.Briant has indicated that TG precipitation in 316 SS is significantly different from 304 SS due to the formation of strain-induced martensite on 304 SS, though an understanding of the role of martensite on the process has not been developed. This study is concerned with evaluating the effects of strain and strain-induced martensite on TG carbide precipitation in 304 SS. The study was performed on samples of a 0.051%C-304 SS deformed to 33% followed by heat treatment at 670°C for 1 h.


Author(s):  
R. Padmanabhan ◽  
W. E. Wood

Intermediate high temperature tempering prior to subsequent reaustenitization has been shown to double the plane strain fracture toughness as compared to conventionally heat treated UHSLA steels, at similar yield strength levels. The precipitation (during tempering) of metal carbides and their subsequent partial redissolution and refinement (during reaustenitization), in addition to the reduction in the prior austenite grain size during the cycling operation have all been suggested to contribute to the observed improvement in the mechanical properties. In this investigation, 300M steel was initially austenitized at 1143°K and then subjected to intermediate tempering at 923°K for 1 hr. before reaustenitizing at 1123°K for a short time and final tempering at 583°K. The changes in the microstructure responsible for the improvement in the properties have been studied and compared with conventionally heat treated steel. Fig. 1 shows interlath films of retained austenite produced during conventionally heat treatment.


Author(s):  
M. A. McCoy

Transformation toughening by ZrO2 inclusions in various ceramic matrices has led to improved mechanical properties in these materials. Although the processing of these materials usually involves standard ceramic powder processing techniques, an alternate method of producing ZrO2 particles involves the devtrification of a ZrO2-containing glass. In this study the effects of glass composition (ZrO2 concentration) and heat treatment on the morphology of the crystallization products in a MgO•Al2•SiO2•ZrO2 glass was investigated.


Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


1982 ◽  
Vol 47 (4) ◽  
pp. 373-375 ◽  
Author(s):  
James L. Fitch ◽  
Thomas F. Williams ◽  
Josephine E. Etienne

The critical need to identify children with hearing loss and provide treatment at the earliest possible age has become increasingly apparent in recent years (Northern & Downs, 1978). Reduction of the auditory signal during the critical language-learning period can severely limit the child's potential for developing a complete, effective communication system. Identification and treatment of children having handicapping conditions at an early age has gained impetus through the Handicapped Children's Early Education Program (HCEEP) projects funded by the Bureau of Education for the Handicapped (BEH).


Sign in / Sign up

Export Citation Format

Share Document