ADVANCEMENT IN THE PRODUCTION OF ACTIVATED CARBON FROM BIOMASS USING MICROWAVE HEATING

2017 ◽  
Vol 79 (3) ◽  
Author(s):  
Adekunle Moshood Abioye ◽  
Farid Nasir Ani

An overview of recent advancement in the production of activated carbon (AC) from biomass using microwave heating is presented. The use of microwave heating method for the thermal conversion of biomass to useful products has been on the increase in the last decade because it offers fast and uniform heating, and a higher level of automation. The effects of process parameters (microwave power and radiation time, agent flow rate in physical activation and impregnation ratio in chemical activation) on the properties and adsorption capacity of the AC are reviewed. From the results reported in the literature, it can be seen that the influence of the preparation parameters on the adsorption capacity of the prepared AC followed the same pattern. In the physical activation process, microwave power and radiation time have more pronounce effects on the properties of the AC than the activation agent flow rate. Furthermore, the properties of the AC were found to be at their best when the process parameters are at the optimum values wether individually or collectively, and further increase in the process value beyond optimum value resulted in decrease in their adsorption capacity.

2014 ◽  
Vol 33 (5) ◽  
pp. 427-437
Author(s):  
Zhao-qiang Zheng ◽  
Hong-ying Xia ◽  
C. Srinivasakannan ◽  
Jin-hui Peng ◽  
Li-bo Zhang

AbstractEupatorium adenophorum was utilized as raw materials for the preparation of activated carbon via microwave assisted steam activation. Influences of the three vital process parameters – activation temperature, activation duration and steam flow rate – have been assessed on the adsorption capacity and yield of Eupatorium adenophorum activated carbon (EAAC). The process parameters were optimized utilizing the Design Expert software and were identified to be an activation duration of 45 min, an activation temperature of 950 °C and a steam flow rate of 0.7 ml/min, with the resultant iodine number and yield being 1,010 mg/g and 20.13% respectively. The validity of process model to optimize the process parameters was verified using the analysis of variance (ANOVA). The key parameters that characterize quality of the porous carbon such as the BET surface area, total pore volume and average pore diameter were estimated to be 1,142 m2/g, 0.84 ml/g and 3.3 nm respectively, for the sample corresponding to the optimized process conditions. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM). The present work strongly supports utilization of Eupatorium adenophorum as a potential precursor through microwave heating.


2013 ◽  
Vol 594-595 ◽  
pp. 240-244
Author(s):  
Nor Adilla Rashidi ◽  
Suzana Yusup ◽  
Azry Borhan

The objective of this research is to synthesize the microporous activated carbon and test its applicability for CO2gas capture. In this study, coconut shell-based and commercial activated carbon is used as the solid adsorbent. Based on the findings, it shows that the gas adsorption capacity is correlated to the total surface area of the materials. In addition, reduction in the adsorption capacity with respect to temperature proves that the physisorption process is dominant. Higher carbon dioxide (CO2) adsorption capacity in comparison to nitrogen (N2) capacity contributes to higher CO2/N2selectivity, and confirms its applicability in the post-combustion process. Utilization of abundance agricultural wastes and one-step physical activation process is attractive as it promotes a cleaner pathway for activated carbon production, and simultaneously, reduces the total operating cost.


2017 ◽  
Vol 55 (4) ◽  
pp. 494 ◽  
Author(s):  
Hoa Thai Ma ◽  
Hung Cam Ly ◽  
Van Thi Thanh Ho ◽  
Nguyen Bao Pham ◽  
Dat Chi Nguyen ◽  
...  

In this study, rice husk was used as a precursor to prepare activated carbon using steam as a physical activation agent. Steam for activation can be used to activate almost all raw materials. A variety of methods have been developed but all of these share the same basic principle of initial carbonization followed by an activation step with steam. The study also investigates the effects of preparation parameters on the surface characteristics of the carbon. These parameters include the range of temperature and time in the carbonization and activation. The initial carbonization, done at temperatures up to 500°C in 60 min, is a highly exothermic process where the temperature is strictly controlled. The creation of the internal surface is done during the activation step with steam at temperatures 800°C in 30 min., for which the BET surface area is up to 710.8m2/g. Besides, the iodine and methylene blue adsorption capacity of rice-husk carbon are the best that reach 865.98±6.5 and 217.86±1.0 (mg/g), respectively. The entire synthetic procedure was simple, environmental-friendly and economical-effectively. The application prospect of the activated carbon prepared in this work was much more promising due to its high adsorptive capacity.


2014 ◽  
Vol 936 ◽  
pp. 1809-1815
Author(s):  
Ying Fei Hou ◽  
Ya Ya Gu ◽  
Qing Ping Mou ◽  
Gang Yao ◽  
Jian Hui Zhang

The activated carbon was prepared from the Jing Bo shot coke using KOH as the activation agent by microwave heating. The effect of microwave radiation time, the microwave power and the ratio of activation to shot coke on the properties of the activated carbon were investigated in detail. The result showed that the optimized condition of preparation of activated carbon is as followed: the ratio of activation agent to shot coke is 3:1, the microwave power 900 W and the microwave radiation time is 40 min. In this condition, the BET surface area of the activated carbon is 2668 m2/g; the iodine adsorption value 2281 mg/g and the benzene adsorption value 1368 mg/g.


2020 ◽  
Vol 5 (3) ◽  
pp. 221
Author(s):  
Muhammad Azam ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variation of activation temperature of activated carbon from sugar palm bunches of chemically activatied with the activation agent of potassium silicate (K2SiO3) on the adsorption capacity of iodine and methylene blue. Activated carbon from bunches of sugar palmacquired in four steps: preparationsteps, carbonizationstepsusing the pyrolysis reactor with temperature of 300 oC - 400 oC for 8 hours and chemical activation using of potassium silicate (K2SiO3) activator in weight ratio of 2: 1 and physical activation using the electric furnace for 30 minutes with temperature variation of600 oC, 650 oC, 700 oC, 750 oC and 800 oC. The iodine and methyleneblue adsorption testedby Titrimetric method and Spectrophotometry methodrespectively. The results of the adsorption of iodine and methylene blue activated carbon from sugar palm bunches increased from 240.55 mg/g and 63.14 mg/g at a temperature of 600 oC to achieve the highest adsorption capacity of 325.80 mg/g and 73.59 mg/g at temperature of 700 oC and decreased by 257.54 mg/g and 52.03 mg/g at a temperature of 800 oCrespectively.However, it does not meet to Indonesia standard (Standard Nasional Indonesia/SNI), which is 750 mg/g and 120 mg/g respectively.


Author(s):  
Nawwarah Mokti ◽  
Azry Borhan ◽  
Siti Nur Azella Zaine ◽  
Hayyiratul Fatimah Mohd Zaid

The use of an activating agent in chemical activation of activated carbon (AC) production is very important as it will help to open the pore structure of AC as adsorbents and could enhance its performance for adsorption capacity. In this study, a pyridinium-based ionic liquid (IL), 1-butylpyridinium bis(trifluoromethylsulfonyl) imide, [C4Py][Tf2N] has been synthesized by using anion exchange reaction and was characterized using few analyses such as 1H-NMR, 13C-NMR and FTIR. Low-cost AC was synthesized by chemical activation process in which rubber seed shell (RSS) and ionic liquid [C4Py][Tf2N] were employed as the precursor and activating agent, respectively. AC has been prepared with different IL concentration (1% and 10%) at 500°C and 800°C for 2 hours. Sample AC2 shows the highest SBET and VT which are 392.8927 m2/g and 0.2059 cm3/g respectively. The surface morphology of synthesized AC can be clearly seen through FESEM analysis. A high concentration of IL in sample AC10 contributed to blockage of pores by the IL. On the other hand, the performance of synthesized AC for CO2 adsorption capacity also studied by using static volumetric technique at 1 bar and 25°C. Sample AC2 contributed the highest CO2 uptakes which is 50.783 cm3/g. This current work shows that the use of low concentration IL as an activating agent has the potential to produce porous AC, which offers low-cost, green technology as well as promising application towards CO2 capture.


Jurnal Kimia ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
W. P. Utoo1 ◽  
E. Santoso ◽  
G. Yuhaneka ◽  
A. I. Triantini ◽  
M. R. Fatqi ◽  
...  

The aim of this research is to get activated carbon from sugarcane bagasse with high adsorption capacity to Naphthol Yellow S and to know factors influencing the adsorption capacity. Activated carbon is prepared by incomplete combustion of sugracane bagasse. The resulting carbon is activated with H2SO4 with concentration variation of 0.5; 1.0; 1.5 and 2.0 M and is continued by calcination at 400 °C. The measurement of the surface area of ??activated carbon by the methylene blue method indicates that the activation process successfully extends the surface area of carbon from 31.87 m2/g before activation to 66-72 m2/g after activation. Activated carbon with concentration of 2.0 M H2SO4 showed the highest surface area of ??71.85 m2/g, however, the best adsorption was shown by activated carbon with a concentration of 0.5 M H2SO4 with the adsorption capacity of 83.93%. The adsorption test showed that the best amount of adsorbent was 0.2 g with contact time for 30 minutes. Prolonged contact time can decrease the amount of Naphthol Yellow S adsorbed. The best adsorption test result was shown by sample with activator concentration of 0,5 M, mass of 0,2 g and contact time of 30 min with adsorption capacity 95,81% or amount of dye adsorbed equal to 143,72 mg/g. The adsorption study also showed that the entire Naphthol Yellow S adsorption process followed the Langmuir isothemal adsorption model. Qualitative testing of real batik waste indicates that activated carbon can reduce the dyes waste containing Naphthol Yellow Sexhibited by the color of batik waste which is more faded.  


2015 ◽  
Vol 34 (7) ◽  
pp. 667-674
Author(s):  
Jian Wu ◽  
Hongying Xia ◽  
Libo Zhang ◽  
Yi Xia ◽  
Jinhui Peng ◽  
...  

Abstract The present study reports the effect of microwave power and microwave heating time on activated carbon adsorption ability. The waste bamboo was used to preparing high surface area activated carbon via microwave heating. The bamboo was carbonized for 2 h at 600°C to be used as the raw material. According to the results, microwave power and microwave heating time had a significant impact on the activating effect. The optimal KOH/C ratio of 4 was identified when microwave power and microwave heating time were 700 W and 15 min, respectively. Under the optimal conditions, surface area was estimated to be 3441 m2/g with pore volume of 2.093 ml/g and the significant proportion of activated carbon was microporous (62.3%). The results of Fourier transform infrared spectroscopy (FTIR) were illustrated that activated carbon surface had abundant functional groups. Additionally the pore structure is characterized using Scanning Electron Microscope (SEM).


2015 ◽  
Vol 1107 ◽  
pp. 347-352 ◽  
Author(s):  
Collin Glen Joseph ◽  
Duduku Krishniah ◽  
Yun Hin Taufiq-Yap ◽  
Masnah Massuanna ◽  
Jessica William

Abstract. Waste tires, which are an abundant waste product of the automobile industry, were used to prepare activated carbon by means of physical and chemical activation. A two-stage process was used, with a semi-carbonization stage as the first stage, followed by an activation stage as the second stage.All experiments were conducted in a laboratory-scale muffle furnace under static conditions in a self-generated atmosphere. During this process, the effects of the parametric variables of semi-carbonization time (for the physical activation process), activation time and temperature and impregnation ratios (for the chemical activation process) on the percentage yield were studied and compared. Varying these parametric variables yielded interesting results, which in turn affected the adsorption process of 2,4-DCP, which was the simulated pollutant in aqueous form. The optimized percentage yields of activated carbon that were obtained were 41.55% and 44.88% ofthe physical and chemical activation treatment processes respectively.Keywords: Physical activation, chemical activation, waste rubber tires, 2,4-dichlorophenol, activated carbon.


Sign in / Sign up

Export Citation Format

Share Document