scholarly journals Fagoterapia, alternativa para el control de las infecciones bacterianas. Perspectivas en Colombia

2014 ◽  
Vol 20 (1) ◽  
pp. 43
Author(s):  
Catalina Prada-Peñaranda ◽  
Angela-Victoria Holguin-Moreno ◽  
Andres-Fernando González-Barrios ◽  
Martha-Josefina Vives-Florez

Bacteria easily acquire resistance to antimicrobial agents; this reduces the number of effective antibiotics available to treat bacterial infections. Food contamination by bacteria also generates important economic losses and health risks. Products for human consumption must be free of antibiotics used in clinical treatments, and the control of bacteria with antimicrobials is strictly regulated; however, there is a lack of development of new antibiotics. As a result, the development of new antimicrobial strategies is vital. Viruses that infect bacteria called bacteriophages (phages) have been proposed as an alternative treatment in an approach known as phage-therapy. Several studies have evaluated and demonstrated their effectiveness against pathogenic bacteria; currently, there are private companies dedicated to the development of new products based on phage cocktails, to control some bacterial infections. In Colombia, there is no previous information about the use of phages, but phage-therapy represents a great opportunity to use the diversity of the native microbiota. In this review, we present the perspectives for phage-therapy in Colombia as a treatment against bacterial infections.

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 522 ◽  
Author(s):  
Paula Segura-Ramírez ◽  
Pedro Silva Júnior

The remarkable ability of microorganisms to develop resistance to conventional antibiotics is one of the biggest challenges that the pharmaceutical industry currently faces. Recent studies suggest that antimicrobial peptides discovered in spider venoms may be useful resources for the design of structurally new anti-infective agents effective against drug-resistant microorganisms. In this work, we found an anionic antibacterial peptide named U1-SCRTX-Lg1a in the venom of the spider Loxosceles gaucho. The peptide was purified using high-performance liquid chromatography (HPLC), its antimicrobial activity was tested through liquid growth inhibition assays, and its chemical properties were characterized using mass spectrometry. U1-SCRTX-Lg1a was found to show a monoisotopic mass of 1695.75 Da, activity against Gram-negative bacteria, a lack of hemolytic effects against human red blood cells, and a lack of cytotoxicity against human cervical carcinoma cells (HeLa). Besides this, the sequence of the peptide exhibited great similarity to specific regions of phospholipases D from different species of Loxosceles spiders, leading to the hypothesis that U1-SCRTX-Lg1a may have originated from a limited proteolytic cleavage. Our data suggest that U1-SCRTX-Lg1a is a promising candidate for the development of new antibiotics that could help fight bacterial infections and represents an exciting discovery for Loxosceles spiders.


2017 ◽  
Vol 63 (11) ◽  
pp. 865-879 ◽  
Author(s):  
Ayman El-Shibiny ◽  
Salma El-Sahhar

Since their discovery in 1915, bacteriophages have been used to treat bacterial infections in animals and humans because of their unique ability to infect their specific bacterial hosts without affecting other bacterial populations. The research carried out in this field throughout the 20th century, largely in Georgia, part of USSR and Poland, led to the establishment of phage therapy protocols. However, the discovery of penicillin and sulfonamide antibiotics in the Western World during the 1930s was a setback in the advancement of phage therapy. The misuse of antibiotics has reduced their efficacy in controlling pathogens and has led to an increase in the number of antibiotic-resistant bacteria. As an alternative to antibiotics, bacteriophages have become a topic of interest with the emergence of multidrug-resistant bacteria, which are a threat to public health. Recent studies have indicated that bacteriophages can be used indirectly to detect pathogenic bacteria or directly as biocontrol agents. Moreover, they can be used to develop new molecules for clinical applications, vaccine production, drug design, and in the nanomedicine field via phage display.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
James V. Rogers ◽  
Veronica L. Hall ◽  
Charles C. McOsker

Antimicrobial resistance (AMR) is a concerning global threat that, if not addressed, could lead to increases in morbidity and mortality, coupled with societal and financial burdens. The emergence of AMR bacteria can be attributed, in part, to the decreased development of new antibiotics, increased misuse and overuse of existing antibiotics, and inadequate treatment options for biofilms formed during bacterial infections. Biofilms are complex microbiomes enshrouded in a self-produced extracellular polymeric substance (EPS) that is a primary defense mechanism of the resident microorganisms against antimicrobial agents and the host immune system. In addition to the physical protective EPS barrier, biofilm-resident bacteria exhibit tolerance mechanisms enabling persistence and the establishment of recurrent infections. As current antibiotics and therapeutics are becoming less effective in combating AMR, new innovative technologies are needed to address the growing AMR threat. This perspective article highlights such a product, CMTX-101, a humanized monoclonal antibody that targets a universal component of bacterial biofilms, leading to pathogen-agnostic rapid biofilm collapse and engaging three modes of action—the sensitization of bacteria to antibiotics, host immune enablement, and the suppression of site-specific tissue inflammation. CMTX-101 is a new tool used to enhance the effectiveness of existing, relatively inexpensive first-line antibiotics to fight infections while promoting antimicrobial stewardship.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 564 ◽  
Author(s):  
Maciej Żaczek ◽  
Beata Weber-Dąbrowska ◽  
Andrzej Górski

Facing antibiotic resistance has provoked a continuously growing focus on phage therapy. Although the greatest emphasis has always been placed on phage treatment in humans, behind phage application lies a complex approach that can be usefully adopted by the food industry, from hatcheries and croplands to ready-to-eat products. Such diverse businesses require an efficient method for combating highly pathogenic bacteria since antibiotic resistance concerns every aspect of human life. Despite the vast abundance of phages on Earth, the aquatic environment has been considered their most natural habitat. Water favors multidirectional Brownian motion and increases the possibility of contact between phage particles and their bacterial hosts. As the global production of aquatic organisms has rapidly grown over the past decades, phage treatment of bacterial infections seems to be an obvious and promising solution in this market sector. Pathogenic bacteria, such as Aeromonas and Vibrio, have already proved to be responsible for mass mortalities in aquatic systems, resulting in economic losses. The main objective of this work is to summarize, from a scientific and industry perspective, the recent data regarding phage application in the form of targeted probiotics and therapeutic agents in aquaculture niches.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marc B. Habash ◽  
Mara C. Goodyear ◽  
Amber J. Park ◽  
Matthew D. Surette ◽  
Emily C. Vis ◽  
...  

ABSTRACT Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosa in vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.


2002 ◽  
Vol 15 (2) ◽  
pp. 333-371 ◽  
Author(s):  
John R Pluske ◽  
David W Pethick ◽  
Deborah E Hopwood ◽  
David J Hampson

AbstractThere are several enteric bacterial diseases and conditions of pigs that require control to prevent overt disease, to reduce morbidity and mortality, and to improve the efficiency of production. Traditionally, veterinarians, feed manufacturers and producers have relied upon antibiotics and minerals (for example, ZnO, CuSO4) in diets for a large part of this control. However, recent trends, particularly in Europe, are to reduce antimicrobial use and seek alternative or replacement strategies for controlling enteric bacterial diseases. The majority of these strategies rely on ‘nutrition’, taken in its broadest sense, to reduce the susceptibility of pigs to these diseases. Evidence to date suggests that specific dietary interventions, for example feeding very highly-digestible diets based on cooked white rice, can reduce the proliferation of a number of specific enteric bacterial infections, such as post-weaning colibacillosis. No simple and universal way to reduce susceptibility to pathogens in the gastrointestinal tract has been identified, and the underlying basis for many of the reported positive effects of ‘nutrition’ on controlling enteric infections lacks robust, scientific understanding. This makes it difficult to recommend dietary guidelines to prevent or reduce enteric bacterial diseases. Furthermore, some diseases, such as porcine intestinal spirochaetosis caused byBrachyspira pilosicoli, are sometimes associated with other pathogens (co-infections). In such cases, each pathogen might have different nutrient requirements, ecological niches and patterns of metabolism for which a variety of dietary interventions are needed to ameliorate the disease. Greater understanding of how ‘nutrition’ influences gut epithelial biology and immunobiology, and their interactions with both commensal and pathogenic bacteria, holds promise as a means of tackling enteric disease without antimicrobial agents. In addition, it is important to consider the overall system (i.e. management, housing, welfare) of pig production in the context of controlling enteric bacterial diseases.


2020 ◽  
Vol 16 (2) ◽  
pp. 207-212
Author(s):  
Wissam Zam ◽  
Ali Ali ◽  
Walaa Ibrahim

Background and Objective: With the significant increase in the prevalence of infectious diseases and the development of drug resistance by human pathogenic bacteria, there is a continuous need to discover new antimicrobial compounds from plants. Methods: Four extracts of wild Myrtus communis L. berries (myrtle berries) were prepared with the addition of Cinnamomum verum and Eugenia caryophyllata. The extracts were screened in vitro for their antimicrobial activities using agar-well diffusion method against Escherichia coli, Staphylococcus aureus, Enterobacter cloacae, Listeria monocytogenes, Pseudomonas aeruginosa and Proteus mirabilis cultures. Results: The inhibition zones ranged from 12 to 22 mm. The MICs values of extracts lies between the ranges of 30 to 100 mg/ml. Of the extracts studied, the most active ones were those obtained from the myrtle berries:cloves, myrtle berries:cinnamon:cloves with the highest inhibition zones 22 mm and 17mm against S. aureus and L. monocytogenes at 50 mg/ml and 80 mg/ml, respectively. None of the extracts was active against E. coli and P. mirabilis. Conclusion: The present investigations have exposed that the myrtle berries:cloves, myrtle berries: cinnamon:cloves extracts could be used in traditional medicine as natural antimicrobial agents in treatment the bacterial infections.


2021 ◽  
Author(s):  
Kanika Bhargava ◽  
K Gururaj ◽  
G. K. Aseri ◽  
Gopal Nath ◽  
Virendra Bahadur Yadav ◽  
...  

Abstract Due to the awareness and benefits of goat rearing in developing economies, goats' significance is increasing. Unfortunately, these ruminants are threatened via multiple bacterial pathogens such as enteropathogenic Escherichia coli (EPEC) and its pathotypes. In goat kids and lambs, EPEC causes gastrointestinal disease leading to substantial economic losses for farmers and may also pose a threat to public health via the spread of zoonotic diseases. Management of infection is primarily based on antibiotics, but the need for new therapeutic measures as an alternative to antibiotics is becoming vital because of the advent of antimicrobial resistance (AMR). The current study focuses on the prevalence of enteric diseases, their identification through various molecular techniques viz., SYBR green real-time PCR, conventional PCR based on bfpA gene, PCR based on uspA gene and isolation, purification of naturally occurring phages against three EPEC multi-drug resistant strains isolated from the neonatal goat. Bacteriophages are novel components that can be used to tackle bacterial infections and AMR, where host immune responses and antimicrobial agents become incompetent. It was observed that a PCR based approach is more effective and rapid as compared to phenotypic tests. It was also established that the isolated bacteriophages exhibited potent antibacterial efficacy in-vitro. Hence, bacteriophages, being a natural therapeutic biological agent docking bacterial host, may be explored as a potential alternative to antibiotics in managing public, livestock and environmental health in this troubling situation of AMR.


2021 ◽  
Vol 14 (2) ◽  
pp. 319-328
Author(s):  
Mbarga M. J. Arsène ◽  
Anyutoulou K. L. Davares ◽  
Smolyakova L. Andreevna ◽  
Ermolaev A. Vladimirovich ◽  
Bassa Z. Carime ◽  
...  

Although the production of safe food for human consumption is the primary purpose for animal rearing, the environment and well-being of the animals must also be taken into consideration. Based on microbiological point of view, the production of healthy food from animals involves considering foodborne pathogens, on the one hand and on the other hand, the methods used to fight against germs during breeding. The conventional method to control or prevent bacterial infections in farming is the use antibiotics. However, the banning of these compounds as growth promoters caused many changes in animal breeding and their use has since been limited to the treatment and prevention of bacterial infections. In this function, their importance no longer needs to be demonstrated, but unfortunately, their excessive and abusive use have led to a double problem which can have harmful consequences on consumer health: Resistance to antibiotics and the presence of antibiotic residues in food. The use of probiotics appears to be a suitable alternative to overcome these problems because of their ability to modulate the immune system and intestinal microflora, and further considering their antagonistic role against certain pathogenic bacteria and their ability to play the role of growth factor (sometimes associated with prebiotics) when used as feed additives. This review aims to highlight some of the negative effects of the use of antibiotics in animal rearing as well as emphasize the current knowledge on the use of probiotics as a feed additive, their influence on animal production and their potential utility as an alternative to conventional antibiotics, particularly in poultry, pig, and fish farming.


2020 ◽  
Author(s):  
Jaden Bhogal ◽  

Antimicrobial resistance (AMR) is the ability of a microorganism to resist antimicrobial treatments against it, resulting in persisted and oftentimes lethal infection in individuals. The World Health Organization (WHO) predicts that AMR has the potential to skyrocket into one of the largest global health issues humanity has ever faced. In their 2018 fact sheet, they mention how it will cause 10 million deaths annually by 2050, as well as US $100 trillion in economic losses (World Health Organization, 2018). AMR has greatly reduced the efficacy of antibiotics in treating bacterial infections. According to Benno. H. ter Kuile and colleagues from the Department of Molecular Biology and Microbial Food Safety at the University of Amsterdam, most AMR is caused by practices in the agricultural industry, making it an extremely complex and difficult problem to solve regardless of its urgency (ter Kuile, Kraupner & Brul, 2016). However, Kaitlyn Kortright and colleagues from Yale University and the Yale School of Medicine, posit that phage therapy - a novel medical treatment with renewed interest in Western medicine - has large potential as an effective solution for antimicrobial resistance in bacteria (Kortright, Chan, Koff & Turner, 2019).


Sign in / Sign up

Export Citation Format

Share Document