Calculating Individual and Total Muscular Translational Stiffness: A Knee Example

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Joshua G. A. Cashaback ◽  
Michael R. Pierrynowski ◽  
Jim R. Potvin

Research suggests that the knee joint may be dependent on an individual muscle's translational stiffness (KT) of the surrounding musculature to prevent or compensate for ligament tearing. Our primary goal was to develop an equation that calculates KT. We successfully derived such an equation that requires as input: a muscle's coordinates, force, and stiffness acting along its line of action. This equation can also be used to estimate the total joint muscular KT, in three orthogonal axes (AP: anterior-posterior; SI: superior-inferior; ML: medial-lateral), by summating individual muscle KT contributions for each axis. We then compared the estimates of our equation, using a commonly used knee model as input, to experimental data. Our total muscular KT predictions (44.0 N/mm), along the anterior/posterior axis (AP), matched the experimental data (52.2 N/mm) and was well within the expected variability (22.6 N/mm). We then estimated the total and individual muscular KT in two postures (0 deg and 90 deg of knee flexion), with muscles mathematically set to full activation. For both postures, total muscular KT was greatest along the SI-axis. The extensors provided the greatest KT for each posture and axis. Finally, we performed a sensitivity analysis to explore the influence of each input on the equation. It was found that pennation angle had the largest effect on SI KT, while muscle line of action coordinates largely influenced AP and ML muscular KT. This equation can be easily embedded within biomechanical models to calculate the individual and total muscular KT for any joint.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Thomas Maximilian Köhler ◽  
Malte Bellmann ◽  
Siegmar Blumentritt

BACKGROUND: An often assumed advantage of polycentric knee joints compared to monocentric ones is the improved ground clearance during swing phase due to the geometric shortening of the lower leg segment (LLS). OBJECTIVE: To investigate whether polycentric knee joints considerably improve ground clearance and to evaluate the influence of prosthetic alignment on the extent of ground clearance. METHODOLOGY: 11 polycentric and 2 monocentric knee joints were attached to a rigid, stationary testing device. Shortening of the LLS and the resulting ground clearance during knee flexion were measured. Prosthetic components were mounted at the same height and the anterior-posterior position was in accordance with the manufacturer's alignment recommendations. FINDINGS: Shortening of up to 14.7 (SD=0.0) mm at the instance of minimal ground clearance during swing phase was measured. One knee joint elongated by 4.4 (SD=0.0) mm. Measurements of the ground clearance demonstrated differences up to 25.4 (SD=0.0) mm. One monocentric knee joint provided more ground clearance when compared to 8 of the polycentric knee joints investigated.   CONCLUSION: Only some polycentric knee joints shorten appreciably during swing phase. With an optimized prosthetic alignment and a well-designed swing phase control, a monocentric knee joint may generate greater ground clearance compared to a polycentric knee joint. LAYMAN’S ABSTRACT Tripping is a safety risk for amputees and it is mainly affected by ground clearance during swing phase. An often assumed advantage of polycentric knee joints compared to monocentric ones is the improved ground clearance during swing phase due to the geometric shortening of the lower leg segment (LLS). Based on this statement safety benefits for above knee-amputees due to reduced danger of stumbling are discussed commonly for the entire group of polycentric knee joints. We believe that this statement is not true for all polycentric knee joint designs. Therefore, we analyzed 11 polycentric and two monocentric knee joints in a rigid, stationary testing device with their individual prosthetic alignments according to the manufacturer’s alignment recommendations. Shortening of the LLS and the resulting ground clearance during knee flexion were measured. The results showed shortening effects of up to 15 mm. One knee joint elongated by 4 mm. One monocentric knee joint provided more ground clearance when compared to 8 of the polycentric knee joints investigated. We conclude, that only some polycentric knee joints shorten appreciably during swing phase. With an optimized prosthetic alignment a monocentric knee joint may generate greater ground clearance compared to a polycentric knee joint. Article PDF Link: https://jps.library.utoronto.ca/index.php/cpoj/article/view/33768/26547 How To Cite: Köhler T.M, Bellmann M, Blumentritt S. Polycentric Exoprosthetic Knee Joints – Extent of Shortening during Swing Phase. Canadian Prosthetics & Orthotics Journal. 2020;Volume3, Issue1, No.5. https://doi.org/10.33137/cpoj.v3i1.33768 Corresponding Author: Thomas Maximilian Köhler, MScOttobock: Hermann-Rein-Straße 2a, 37075, Göttingen.E-mail: [email protected]: https://orcid.org/0000-0002-5063-121X


1986 ◽  
Vol 51 (4) ◽  
pp. 731-737
Author(s):  
Viliam Klimo ◽  
Jozef Tiňo

Geometry and energy parameters of the individual dissociation intermediate steps of CH4 molecule, parameters of the barrier to linearity and singlet-triplet separation of the CH2 molecule have been calculated by means of the UMP method in the minimum basis set augmented with the bond functions. The results agree well with experimental data except for the geometry of CH2(1A1) and relatively high energy values of CH(2II) and CH2(1A1) where the existence of two UHF solutions indicates a necessity of description of the electronic correlation by more exact methods of quantum chemistry.


Author(s):  
Jonas Gnauert ◽  
Felix Schlüter ◽  
Georg Jacobs ◽  
Dennis Bosse ◽  
Stefan Witter

AbstractWind turbines (WT) must be further optimized concerning availability and reliability. One of the major reasons of WT downtime is the failure of gearbox bearings. Some of these failures occur, due to the ring creep phenomenon, which is mostly detected in the planetary bearings. The ring creep phenomenon describes a relative movement of the outer ring to the planetary gear. In order to improve the understanding of ring creep, the finite element method (FEM) is used to simulate ring creep in planetary gears. First, a sensitivity analysis is carried out on a small bearing size (NU205), to characterize relevant influence parameters for ring creep—considered parameters are teeth module, coefficient of friction, interference fit and normal tooth forces. Secondly, a full-scale planetary bearing (SL185030) of a 1MW WT is simulated and verified with experimental data.


Author(s):  
K A Kazim ◽  
B Maiti ◽  
P Chand

Centrifugal pumps are being used increasingly for transportation of slurries through pipelines. To design a slurry handling system it is essential to have a knowledge of the effects of suspended solids on the pump performance. A new correlation to predict the head reduction factor for centrifugal pumps handling solids has been developed. This correlation takes into account the individual effect of particle size, particle size distribution, specific gravity and concentration of solids on the centrifugal pump performance characteristics. The range of validity of the correlation has been verified by experiment and by using experimental data available from the literature. The present correlation shows better agreement with the experimental data than existing correlations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Jeewan Chandra ◽  
Pooja Kapri Bhatt ◽  
Kuldeep Kholiya

Compression behavior of carbon nanotube bundles and individual carbon nanotubes within the bundle has been studied by using the Suzuki, Shanker, and usual Tait formulations. It is found that the Suzuki formulation is not capable of explaining the compression behavior of nanomaterials. Shanker formulation slightly improves the results obtained by the Suzuki formulation, but only usual Tait’s equation (UTE) of state gives results in agreement to the experimental data. The present study reveals that the product of bulk modules and the coefficient of volume thermal expansion remain constant for carbon nanotubes. It has also been found that the individual carbon nanotubes are less compressible than bundles of carbon nanotubes.


2004 ◽  
Vol 13 (2) ◽  
pp. 135-150 ◽  
Author(s):  
Scott Ross ◽  
Kevin Guskiewicz ◽  
William Prentice ◽  
Robert Schneider ◽  
Bing Yu

Objective:T o determine differences between contralateral limbs’ strength, proprio-ception, and kinetic and knee-kinematic variables during single-limb landing.Setting:Laboratory.Subjects:30.Measurements:Hip, knee, and foot isokinetic peak torques; anterior/posterior (AP) and medial/lateral (ML) sway displacements during a balance task; and stabilization times, vertical ground-reaction force (VGRF), time to peak VGRF, and knee-flexion range of motion (ROM) from initial foot contact to peak VGRF during single-limb landing.Results:The kicking limb had significantly greater values for knee-extension (P= .008) and -flexion (P= .047) peak torques, AP sway displacement (P= .010), knee-flexion ROM from initial foot contact to peak VGRF (P< .001), and time to peak VGRF (P= .004). No other dependent measures were significantly different between limbs (P> .05).Conclusion:The kicking limb had superior thigh strength, better proprioception, and greater knee-flexion ROM than the stance limb.


Author(s):  
Fanny M. Besem ◽  
Robert E. Kielb ◽  
Nicole L. Key

The frequency mistuning that occurs due to manufacturing variations and wear and tear of the blades can have a significant effect on the flutter and forced response behavior of a blade row. Similarly, asymmetries in the aerodynamic or excitation forces can tremendously affect the blade responses. When conducting CFD simulations, all blades are assumed to be tuned (i.e. to have the same natural frequency) and the aerodynamic forces are assumed to be the same on each blade except for a shift in interblade phase angle. The blades are thus predicted to vibrate at the same amplitude. However, when the system is mistuned or when asymmetries are present, some blades can vibrate with a much higher amplitude than the tuned, symmetric system. In this research, we first conduct a deterministic forced response analysis of a mistuned rotor and compare the results to experimental data from a compressor rig. It is shown that tuned CFD results cannot be compared directly with experimental data because of the impact of frequency mistuning on forced response predictions. Moreover, the individual impact of frequency, aerodynamic, and forcing function perturbations on the predictions is assessed, leading to the conclusion that a mistuned system has to be studied probabilistically. Finally, all perturbations are combined and Monte-Carlo simulations are conducted to obtain the range of blade response amplitudes that a designer could expect.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10975
Author(s):  
Nicos Haralabidis ◽  
Gil Serrancolí ◽  
Steffi Colyer ◽  
Ian Bezodis ◽  
Aki Salo ◽  
...  

Biomechanical simulation and modelling approaches have the possibility to make a meaningful impact within applied sports settings, such as sprinting. However, for this to be realised, such approaches must first undergo a thorough quantitative evaluation against experimental data. We developed a musculoskeletal modelling and simulation framework for sprinting, with the objective to evaluate its ability to reproduce experimental kinematics and kinetics data for different sprinting phases. This was achieved by performing a series of data-tracking calibration (individual and simultaneous) and validation simulations, that also featured the generation of dynamically consistent simulated outputs and the determination of foot-ground contact model parameters. The simulated values from the calibration simulations were found to be in close agreement with the corresponding experimental data, particularly for the kinematics (average root mean squared differences (RMSDs) less than 1.0° and 0.2 cm for the rotational and translational kinematics, respectively) and ground reaction force (highest average percentage RMSD of 8.1%). Minimal differences in tracking performance were observed when concurrently determining the foot-ground contact model parameters from each of the individual or simultaneous calibration simulations. The validation simulation yielded results that were comparable (RMSDs less than 1.0° and 0.3 cm for the rotational and translational kinematics, respectively) to those obtained from the calibration simulations. This study demonstrated the suitability of the proposed framework for performing future predictive simulations of sprinting, and gives confidence in its use to assess the cause-effect relationships of technique modification in relation to performance. Furthermore, this is the first study to provide dynamically consistent three-dimensional muscle-driven simulations of sprinting across different phases.


1995 ◽  
Vol 03 (02) ◽  
pp. 429-439 ◽  
Author(s):  
S. G. RUDNEV ◽  
A. A. ROMANYUKHA

Using ordinary differential equations, we propose a mathematical model describing an “averaged” dynamics of variables involved in which some parameters are shown to be important characteristics of lung resistance. The model consists of modified D.A. Lauffenburger’s mathematical model for inflammatory reaction in lungs, and the model of humoral immune response (G. I. Marchuk). Coefficients are identified against clinical and experimental data. We attempt to elucidate some disease characteristics in terms of sensitivity analysis of model solutions with respect to parameters variations.


2005 ◽  
Vol 33 (10) ◽  
pp. 1520-1526 ◽  
Author(s):  
Richard K. Shields ◽  
Sangeetha Madhavan ◽  
Emy Gregg ◽  
Jennifer Leitch ◽  
Ben Petersen ◽  
...  

Background Closed kinetic chain exercises such as single-limb squats are preferred for knee rehabilitation. A complete understanding of the neuromuscular control of the knee during the single-limb squat is essential to increase the efficiency of rehabilitation programs. Hypothesis Performing a controlled single-limb squat with resistance to knee flexion and extension will increase the coactivation of the hamstring muscle group, thus reducing the quadriceps/hamstrings ratio. Study Design Descriptive laboratory study. Methods A total of 15 healthy human subjects (7 women, 8 men) performed controlled single-limb squats in a custom mechanical device that provided resistance to both flexion and extension. Subjects performed the task at 3 levels of resistance, set as a percentage of body weight. Surface electromyographic recordings from 7 muscles (gluteus medius, rectus femoris, vastus medialis oblique, vastus lateralis, biceps femoris, semitendinosus, and medial gastrocnemius) were collected during the task. Results Biceps femoris activity during knee flexion increased from approximately 12% maximum voluntary isometric contractions during low resistance (0% body weight) to approximately 27% maximum voluntary isometric contractions during high resistance (8% body weight). Although the quadriceps had greater activity than the hamstrings at all levels of resistance, the quadriceps/hamstrings ratio declined significantly with resistance (F2,27 = 29.05; P=. 012) from 3.0 at low resistance to 2.32 at the highest resistance. Conclusions Performing controlled resisted single-limb squats may help to simultaneously strengthen the quadriceps and facilitate coactivation of the hamstrings, thus reducing anterior tibial shear forces. The coactivation may also increase the dynamic control of the knee joint. Clinical Relevance The typical single-limb squat exercise performed in the clinic does not usually control for bidirectional resistance and knee joint excursion. As seen in this study, controlled single-limb squats at increased levels of resistance help to increase the coactivation of the hamstring muscles, which is essential to optimize neuromuscular control of the knee.


Sign in / Sign up

Export Citation Format

Share Document