Effect of Irradiation Deformation and Graphite Varieties on the Irradiation Equivalent Stress and Life of Nuclear Graphite

Author(s):  
Xiang Fang ◽  
Haitao Wang ◽  
Suyuan Yu

Graphite is selected as moderator, reflector and major internal structural material in high temperature gas-cooled reactors (HTRs) because of its unique characteristics. Inside the core, both high temperature and fast neutron irradiation can influence the mechanical property, thermal property, dimensional change and some other characteristics of graphite in evidence, while the creep of graphite plays an important role in the whole process. There have been several kinds of creep models, and the creep process is divided into two parts in most of models: primary creep and secondary creep. The primary is always treated as exponential function while the secondary is linear. A code based on user subroutines of MSC.MARC is developed in INET in order to perform three-dimensional finite element analysis of irradiation behavior of the graphite components for the HTRs. In this paper, the irradiation behavior of nuclear graphite was simulated, and the impact of irradiation-induced deformation of various kinds of graphite on the irradiation-induced stresses and lives is discussed. In order to describe the creep behavior, the linear elastic model is chosen while the influence of high temperature and irradiation to the dimensional change, physical parameters and creep property of nuclear graphite is used as original data.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhengcao Li ◽  
Dongyue Chen ◽  
Xiaogang Fu ◽  
Wei Miao ◽  
Zhengjun Zhang

As structural material and moderator in high temperature gas-cooled reactor (HTGR), nuclear graphite endures large flux of irradiation in its service time. The microstructure of nuclear graphite is a topical issue studied to predict the irradiation property of graphite and improve manufacturing process. In our present work, the pores in graphite are focused, and the relationship between pore and irradiation behavior is discussed. Three kinds of nuclear graphite (IG-11, NBG-18, and HSM-SC) are concerned, and their porosity, pore size, and morphology before and after irradiation are studied, respectively. A comparison between the three graphites shows that dense small pores which are uniformly distributed in graphite bring better irradiation property because the pores can accommodate some of the internal stress caused by irradiation expansion. Coke particles of small size and a thorough mixture between coke and binder are suggested to obtain such pores in nuclear graphite and thus improve irradiation property.


2020 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
G. Cheymol ◽  
A. Verneuil ◽  
P. Grange ◽  
H. Maskrot ◽  
C. Destouches

Fabry-Perot (FP) sensors like other Fiber Optic (FO) sensors may be of particular interest for in pile experiments in MTR with little room available thanks to their compact size. Light weight also reduces gamma heating hence limiting the thermal effect. Different physical parameters such as temperature, strain, displacement, vibration, pressure, or refractive index may be sensed through the measurement of the optical path length difference in the cavity. We have developed a Fabry-Perot extensometer able to operate at high temperature (up to 400°C), under a high level of radiation (neutron and gamma flux). The measurement based on interferometry is largely insensitive to radiation induced attenuation (RIA) thanks to the wavelength encoding of the useful signal, but for such high fluence as encountered in a reactor core, a special rad-hard fiber is needed. Operating in the wavelength domain around 1ím remains preferable to minimize the impact of irradiation. Moreover, fast neutron radiation is expected to change the structure of the fiber and possibly others materials in the transducer. Then, we revised the basic scheme of Extrinsic Fabry-Perot Interferometer (EFPI) so that the effects of compaction remain limited. Tests under mixed neutron and gamma irradiation permitted to verify the general behavior and particularly the low drift with radiation induced compaction (RIC). Also, two types of tests have been conducted to verify the accuracy at high temperature. The first ones are “measurements” of thermal dilatation of materials: the sensor is fixed on a sample and knowing its thermal expansion, it is possible to predict the measurement expected from the optical sensor when the temperature is increased from low to high temperature. The comparison between the predicted and experimental outputs informs on how the sensor is accurate. The second types are tests on a tensile test bench operating at high temperature. The Fabry-Perot measurements are compared, in the elastic domain, with the expected strain given by the Young modulus of the material, and also on a larger strain domain, with the measurements of a high temperature axial extensometer. Both types of tests are presented and commented.


2020 ◽  
Author(s):  
Steve Johns

Graphite has historically been used as a moderator material in nuclear reactor designs dating back to the first man-made nuclear reactor to achieve criticality (Chicago Pile 1) in 1942. Additionally, graphite is a candidate material for use in the future envisioned next-generation nuclear reactors (Gen IV); specifically, the molten-salt-cooled (MSR) and very-high-temperature reactor (VHTR) concepts. Gen IV reactor concepts will introduce material challenges as temperature regimes and reactor lifetimes are anticipated to far exceed those of earlier reactors. Irradiation-induced defect evolution is a fundamental response in nuclear graphite subjected to irradiation. These defects directly influence the many property changes of nuclear graphite subjected to displacing radiation; however, a comprehensive explanation for irradiation-induced dimensional change remains elusive. The macroscopic response of graphite subjected to displacing irradiation is often modeled semi-empirically based on irradiation data of specific graphite grades (some of which are obsolete). The lack of an analytical description of the response of nuclear graphite subjected to irradiation is due in part to the complex microstructure of synthetic semi-isotropic graphites. Chapter One provides a general overview of the application, processing, and irradiation-induced property changes of nuclear graphite. The key properties affected by displacing irradiation include, but are not limited to, coefficient of thermal expansion (CTE), irradiation creep, and irradiation-induced dimensional change. Additionally, historical models of radiation damage in nuclear graphite, including their inadequacies in accurately describing property changes, are discussed. It should be noted that a comprehensive explanation for all irradiation-induced property change is beyond the scope of this work, which is focused on the evolution of novel atomic-level defects in high-temperature irradiated nuclear graphite and the implications of these defects for the current understanding of irradiation-induced dimensional change. Chapter Two is focused on the development of a novel oxidation-based transmission electron microscopy (TEM) sample-preparation technique for nuclear-grade graphite. Conventionally, TEM specimens are prepared via ion-milling or a focused ion beam (FIB); however, these techniques require the use of displacing radiation and may result in localized areas of irradiation damage. As a result, distinguishing defect structures created as artifacts during sample preparation from those created by electron- or neutron-irradiation can be challenging. Bulk nuclear graphite grades IG-110, NBG-18, and highly oriented pyrolytic graphite (HOPG) were oxidized using a new jet-polishing-like setup where oxygen is used as an etchant. This technique is shown to produce self-supporting electron-transparent TEM specimens free of irradiation-induced artifacts; thus, these specimens can be used as a baseline for in situ irradiation experiments as they have no irradiation-induced damage. Chapter Three examines the dynamic evolution of defect structures in nuclear graphite IG-110 subjected to electron-irradiation. As use of fast neutrons for irradiation experiments is dangerous, expensive, and time consuming, electron-irradiation is arguably a useful surrogate; however, comparisons between the two irradiating particles is also discussed. In situ video recordings of specimens undergoing simultaneous heating and electron-irradiation were used to analyze the dynamic atomic-level defect evolution in real time. Novel fullerene-like defect structures are shown to evolve as a direct result of high-temperature electron-irradiation and cause significant dimensional change to crystallites. Neutron-irradiated nuclear graphite IG-110 was supplied by Idaho National Laboratory as part of the Advanced Graphite Creep capsule experiments (AGC-3). Chapter Four reports the preliminary characterization of IG-110 neutron-irradiated at 817°C to a dose of 3.56 displacements per atom (dpa). Shown is experimental evidence of a ‘ruck and tuck’ defect occurring in high-temperature neutron-irradiated nuclear graphite. The ‘ruck and tuck’ defect arises due to irradiation-induced defects. The interaction of these defects results in the buckling of atomic planes and the formation of a structure composed of two partial carbon nanotubes. The “buckle, ruck and tuck” model was first theoretically predicted via computational modeling in 2011 as a plausible defect structure/mechanism occurring in high-temperature neutron-irradiated graphite by Prof. Malcolm Heggie et al. Chapter Four shows the first direct experimental results to support the “buckle, ruck and tuck” model. Chapter Five further characterizes nuclear graphite IG-110 neutron-irradiated at high temperature (≥800 °C) at doses of 1.73 and 3.56 dpa. Results show further evidence to support the “buckle, ruck and tuck” model and additionally show the presence of larger concentric shelled fullerene-like defects. Fullerene-like defects were found to occur in disordered regions of the microstructure including within nanocracks (Mrozowski cracks). These results agree with high-temperature electron-irradiation studies which showed the formation of fullerene-like defects in-situ and give additional validity to the use of high-flux electron-irradiation as a useful approximation to neutron-irradiation. Furthermore, Chapter Five gives valuable insight to unresolved quantitative anomalies of historical models of graphite expansion and may improve the understanding of current empirical and theoretical models of irradiation-induced property changes in nuclear graphite.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2021 ◽  
pp. 1-41
Author(s):  
W. Walker Hanlon ◽  
Casper Worm Hansen ◽  
Jake Kantor

Using novel weekly mortality data for London spanning 1866-1965, we analyze the changing relationship between temperature and mortality as the city developed. Our main results show that warm weeks led to elevated mortality in the late nineteenth century, mainly due to infant deaths from digestive diseases. However, this pattern largely disappeared after WWI as infant digestive diseases became less prevalent. The resulting change in the temperature-mortality relationship meant that thousands of heat-related deaths—equal to 0.9-1.4 percent of all deaths— were averted. These findings show that improving the disease environment can dramatically alter the impact of high temperature on mortality.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


Author(s):  
Peerzada Mosir Shah ◽  
Mohammad Shafi Mir

The purpose of this study aims at investigating the impact of multi-walled carbon nanotubes (MWCNT’s) on the properties of low viscosity grade asphalt binder. Asphalt binder with viscosity grade-10 is selected as the control binder and later it is modified with different percentages of MWCNT’s (0.5–2.5%). Penetration, softening point, ductility and rotational viscosity test were employed for evaluating the effect of MWCNT’s on basic physical properties of modified asphalt binder. Dynamic Shear Rheometer (DSR) is used for evaluating the rheological properties of the base and modified bitumen, for both aged and unaged bitumen. Based on the conventional and basic rheological tests, it was seen that the addition of MWCNT’s improved the high-temperature performance of modified bitumen. Multiple Stress Creep and Recovery (MSCR) test results revealed that the addition of MWCNT’s improved the creep and recovery of modified binders for both stress intensities (0.1 kPa and 3.2 kPa) which confirms that the modified binder is more rut resistant. Moreover, it was observed that there was a significant improvement in the aging resistance of the asphalt binder due to addition of MWCNTs. However low temperature performance of MWCNTs was not encouraging. Also, MWCNTs addition to asphalt binder was found to be stable under high-temperature storage condition. Overall, there is a significant amount of improvement using MWCNTs in the base asphalt binder.


Sign in / Sign up

Export Citation Format

Share Document