Particle Distribution and Mechanical Properties of Silica-Filled PMMA Micro-Injection Moldings

Author(s):  
Yew Wei Leong ◽  
Supaporn Thumsorn ◽  
Asami Nakai ◽  
Hiroyuki Hamada ◽  
Kohji Yoshinaga ◽  
...  

Micro-injection moldings of poly(methyl methacrylate) filled with silica of various particle sizes ranging from 5 to 50 μm were fabricated. The distribution of the silica particles throughout the moldings was found to be significantly different, i.e. a more homogeneous distribution of fillers was evident as particle size decreases. Fracture properties, fracture surface appearance and transparency were significantly affected by the state of filler distribution.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2019 ◽  
Vol 184 (3-4) ◽  
pp. 388-390
Author(s):  
Kazuki Iwaoka ◽  
Masahiro Hosoda ◽  
Shinji Tokonami ◽  
Eliza B Enriquez ◽  
Lorna Jean H Palad ◽  
...  

Abstract Inhalation exposures occur by inhaled radioactive nuclides depositing in the various locations in the respiratory tract (International Commission on Radiological Protection Publication 66). Respiratory tract deposition depends on particle size. The sensitivity to ionising radiation is different among respiratory regions. Under actual atmospheric environments, the radionuclides attach to aerosols of various size in the atmosphere, so the particle size of radionuclides changes differently. Therefore, it is important for the estimation of health impact to calculate the respiratory tract deposition under atmospheric environment wherein the various sizes of radioactive nuclides (i.e. polydisperse particles) exists. In this study, a tool which can calculate the respiratory tract deposition on the basis of polydisperse particle size distribution was developed to estimate dose depending on variable aerosol particle sizes.


2011 ◽  
Vol 20 (4) ◽  
pp. 096369351102000 ◽  
Author(s):  
Recep Çalin ◽  
Pul Muharrem ◽  
Ramazan Çitak ◽  
Ulvi Şeker

In this study, Al- MgO metal matrix composites (MMC) were produced with 5 %, 10 % and 15 % reinforcement- volume (R-V) ratios by the melt stirring method. In the production of composites 99.5 % pure Al was used as the matrix and MgO powders with the particle size of −105 μm were used as the reinforcement. For every R-V ratio; stirring was made at 500 rev/min at 750°C liquid matrix temperature for 4 minutes and the samples were cooled under normal atmosphere. Then hardness and fracture strengths of the samples were determined and their micro structures were evaluated by using Scanning Electron Microscope (SEM). In general, it was observed that the reinforcement exhibited a homogeneous distribution in horizontal direction. But there is a slight inhomogeneity in vertical direction. It was determined that the increase in the R-V ratio increased the porosity and also the hardness. As for the fracture strength, the highest strength was obtained with the 5 % MgO reinforced sample.


2002 ◽  
Vol 10 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Ye.P. Mamunya ◽  
V.V. Davydenko ◽  
H. Zois ◽  
L. Apekis ◽  
A.A. Snarskii ◽  
...  

The authors have studied the dielectric properties of composite materials based on both thermoplastic and thermoset resins filled with nickel or copper, with various particle sizes and shapes. In addition, two types of particle distribution, random and segregated, were produced for composites filled with nickel. The main objective was to study the effect of the above factors on the dielectric properties of the composites. The concentration dependence of the dielectric parameters (i.e. the real, ∊′, and the imaginary, ∊″, parts of the complex dielectric permittivity and the dielectric loss tangent, tanδ), calculated for all the systems studied, demonstrates a critical behaviour in the percolation threshold region, with maximum values reached at a volume fraction ϕ = ϕc. The dependence of the dielectric parameters on concentration follows power-law behaviour in the ϕ < ϕc region. The critical exponent value for ∊′ is q = 0.75, in agreement with the theoretical one. The dielectric characteristics of the filled composites are more sensitive to the spatial filler distribution. For the segregated PVC-Ni system with an ordered filler distribution, the value of ϕc is much lower than for ER-Ni composites with a random filler distribution. Besides, for the segregated PVC-Ni system, the value of q is not constant, as it depends on the filler concentration. A model for the structure, which explains this behaviour, is proposed.


2017 ◽  
Vol 907 ◽  
pp. 3-7
Author(s):  
Hülya Akkan ◽  
Mehmet Şi̇mşi̇r ◽  
Kerim Emre Öksüz

NiTi shape memory alloys have attracted significant interest due to their unique superelasticity and high damping performance. In this work, the effect of SiC particle size on both physical and mechanical properties of NiTi matrix composite was investigated. Ni and Ti powders with particle sizes of 40 µm were used with the SiC addition with varying particle sizes of 20 µm and 40 µm, respectively. Composites of NiTi with 1wt. % SiC were fabricated by powder metallurgy technique. The effects of SiCp addition on hardness, relative density and wear behavior of NiTi composites have been investigated. The samples were examined by scanning electron microscope, for microstructural studies and phase development. The results showed that the distribution of the reinforced particle was uniform. Moreover, as the SiC particle size decreases, hardness and wear resistance increase. It was demonstrated that SiC particle size significantly enhanced the wear resistance of NiTi composite.


2019 ◽  
Vol 15 (2) ◽  
pp. 260-267
Author(s):  
Johan Sohaili ◽  
Shantha Kumari Muniyandi ◽  
Siti Suhaila Mohamad ◽  
Azreen Ariffin

Composites based on recycled high density polyethylene (rHDPE) and nonmetallic printed circuit board (PCB)  waste were made through melt compounding and compression molding. In this study, the chemical compositions of the nonmetallic PCB material were determined via XRF and it was confirmed that it contains predominantly  72.7% of glass fiber materials which improve the mechanical performances of the rHDPE matrix. The main aim of this study is to determine the effect of different particle sizes and loadings of nonmetallic PCB on mechanical properties of rHDPE/PCB composite. The results indicated that mechanical properties of composites were excellent when nonmetallic materials with particle size from 0.09 to 0.15 mm and adding amount was 30 wt%. Microscopic images revealed that nonmetallic particles with the size of 0.07-0.09 mm and 0.09 -0.15 mm contained majority of single glass fibers whereas, bigger particle sizes of 0.15-0.3 mm and 0.3-0.5 mm, contained glass fibers in the form of bundles and large resin sheet.


2012 ◽  
Vol 217-219 ◽  
pp. 165-173 ◽  
Author(s):  
Nai Xiu Ding ◽  
Fu Lan Hao ◽  
Lei Li ◽  
Wen Sun ◽  
Liang Liu

BR/MgO composites were prepared with seven kinds of particle sizes of MgO filled respectively. Effects of particle sizes on dynamic mechanical properties, vulcanization characteristics and physical properties of BR/MgO composites were studied. The results showed that the tensile strength of composites filled nanoscale of MgO was nine times of pure BR, and the vulcanization time was significantly shorter than that of composites filled with micron grade filler. The RPA experiments proved that the composites filled with MgO of 20nm and 50nm have greatly higher G', and that the G'of the composites increase markedly while the value of tanδ decrease sharply with given temperature above 90 °C increasing. the higher value of tanδ at the frequency mode, and the obvious Payne effect compared with the composites filled micron grade of MgO


2009 ◽  
Vol 628-629 ◽  
pp. 459-464 ◽  
Author(s):  
Fa Zhan Yang ◽  
Xing Ai ◽  
Jun Zhao

A new WC matrix nanocomposite cermet was prepared by hot-press sintering. In the composite, certain amounts of VC is added to the composite as grain growth inhibitors. The consolidation is carried out under pressure 30~35Mpa and sintering temperature 1610°C for soaking 30min sintering. Microstructure of the nanocomposite cermet is scanned by SEM and mechanical properties are measured. It is detected that microstructure and fracture morphology is dissimilar to different particle sizes. Experimental results show that particle size of WC is important to the composite. Results show that relative density and hardness have the similar trend in growth. Meanwhile, the function of Al2O3 addition is also investigated in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Wei Yan ◽  
Li Jing ◽  
Zi Wei ◽  
Han Bing ◽  
Xu-Deng Liang

Different particle size 3 mol% Y2O3-stabilized tetragonal zirconia polycrystalline (3Y-TZP) coated with CePO4was prepared by a coprecipitation method and the effect of zirconia particle-size on its mechanical properties was investigated. The phase composition and microstructure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), respectively. The machining characteristic of as-prepared samples was calculated to be 0.54 for a zirconia particle size of around 30–50 nm. In this grain size range, the hardness, fracture toughness, and bending strength of the coated sample were found to be 10.72 GPa, 5.76 MPa·m1/2, and 463 MPa. Our results show that the grain size of the zirconia before coating greatly influences the mechanical properties of the coated samples because the different particle sizes result in different fracture styles.


2011 ◽  
Vol 364 ◽  
pp. 181-185 ◽  
Author(s):  
Firdaus Omar Mohd ◽  
Md Akil Hazizan ◽  
Zainal Arifin Ahmad

Filler-related characteristic such as particle size, shape and geometry are essential factors that need to be considered during the evaluation of the material’s performance especially in the area of particle filled composites. However, there is limited number of works are reported on this particular issue under high strain rate condition. Based on this concern, the paper presents an experimental results on the effect of particle sizes towards rate sensitivity and dynamic compressive properties of polypropylene/silica nanocomposites across strain rate from 10-2to 10-3s-1. The composite specimens were tested using universal testing machine for static loading and a compression split Hopkinson pressure bar apparatus for dynamic loading. Results show that, the stiffness and strength properties of polypropylene/silica nanocomposites were affected by the size of silica particles. However, the magnitudes of changed are somehow different between micro and nanosizes. On the other hand, particle size also plays a major contribution towards sensitivity of the polypropylene/silica nanocomposites where the smaller the reinforcement sizes, the less sensitive would be the composites. Overall, it is convenience to say that the particle size gives significant contribution towards rate sensitivity and dynamic mechanical properties of polypropylene/silica nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document