Tensile Tests for Cast Stainless Steel: Evolution of the RCC-M Code

Author(s):  
Arnaud Blouin ◽  
Mathieu Couvrat ◽  
Félix Latourte ◽  
Julian Soulacroix

In the framework of a pressurized water reactor primary loop replacement, elbows of different types were produced in cast austenitic stainless steel grade Z3CN 20-09 M. For that type of component, acceptance tests to check the sufficient mechanical properties include room and hot temperature tensile tests, following the RCC-M CMS – 1040 and EN 10002 specifications. A large test campaign on standard 10mm diameter specimens was performed and exhibited a high scattering in yield stress and ultimate tensile strength values. As a consequence, some acceptance tensile tests failed to meet the required minimal values, especially the ultimate tensile strength. Optical and electronic microscopy revealed that the low values were due to the presence of very large grain compared to the specimen gage diameter. However, tensile tests strongly rely on the hypothesis that the specimen gage part can be considered as a representative volume element containing a number of grains large enough so that their variation in size and orientation gives a homogeneous response. To confirm the origin of the scattering, a huge experimental tensile test campaign with specimens of different diameters was conducted. In parallel, FE calculations were also performed. From all those results, it was concluded that it was necessary to improve the RCC-M code for that type of test for cast stainless steel: to do so, a modification sheet was sent and is being investigated by AFCEN.

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3943
Author(s):  
Hana Šebestová ◽  
Petr Horník ◽  
Šárka Mikmeková ◽  
Libor Mrňa ◽  
Pavel Doležal ◽  
...  

The presence of Al-Si coating on 22MnB5 leads to the formation of large ferritic bands in the dominantly martensitic microstructure of butt laser welds. Rapid cooling of laser weld metal is responsible for insufficient diffusion of coating elements into the steel and incomplete homogenization of weld fusion zone. The Al-rich regions promote the formation of ferritic solid solution. Soft ferritic bands cause weld joint weakening. Laser welds reached only 64% of base metal's ultimate tensile strength, and they always fractured in the fusion zone during the tensile tests. We implemented hybrid laser-TIG welding technology to reduce weld cooling rate by the addition of heat of the arc. The effect of arc current on weld microstructure and mechanical properties was investigated. Thanks to the slower cooling, the large ferritic bands were eliminated. The hybrid welds reached greater ultimate tensile strength compared to laser welds. The location of the fracture moved from the fusion zone to a tempered heat-affected zone characterized by a drop in microhardness. The minimum of microhardness was independent of heat input in this region.


1989 ◽  
Vol 111 (1) ◽  
pp. 64-71 ◽  
Author(s):  
S. K. Mukherjee ◽  
J. J. Szy Slow Ski ◽  
V. Chexal ◽  
D. M. Norris ◽  
N. A. Goldstein ◽  
...  

For much of the high-energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but also improves the overall safety and integrity of the plant since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station—Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in. (152-mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel line as small as 3-in. (76-mm) diameter (outside containment) can qualify for pipe rupture hardware elimination.


2021 ◽  
Vol 15 (1) ◽  
pp. 7715-7728
Author(s):  
S. Madhankumar ◽  
K. Manonmani ◽  
V. Karthickeyan ◽  
N. Balaji

The ultimate strength is an important property of any material for the manufacturing of components. This paper utilized the laser beam welding (LBW), due to its smaller dimension, which produces lesser distortion and process velocity is higher. Inconel 625 alloy and duplex 2205 stainless steel is having higher strength and corrosive resistance properties. Due to the above-mentioned properties, it could be used in oil and gas storage containers, marine and geothermal applications. This research work presents an investigation of various input variable effects on the output variable (ultimate tensile strength) in LBW for dissimilar materials namely, Inconel 625 alloy and duplex 2205 stainless steel. The input variables for this research are the power of a laser, welding speed, and focal position. The experimental runs are developed with the help of design of experiment (DOE) and utilized statistical design expert software. The ultimate tensile strength on different runs is measured using a universal tensile testing machine. Then from a response surface methodology and ANOVA, the optimum value of ultimate tensile strength was determined to maximize the weld joint and bead geometry. Finally, the confirmation test was carried out, it reveals the maximum error of 0.912% with the predicted value. In addition, the microstructure of the weld beads was examined using optical microscopy.


2019 ◽  
Vol 944 ◽  
pp. 193-198
Author(s):  
Tian Yi Wang ◽  
Ren Bo Song ◽  
Heng Jun Cai ◽  
Jian Wen ◽  
Yang Su

The present study investigated the effect of cold rolling reduction on microstructure and mechanical properties of a 204C2 Cr–Mn austenitic stainless steel which contained 16%Cr, 2%Ni, 9%Mn and 0.083 %C). The 204C2 austenitic stainless steels were cold rolled at multifarious thickness reductions of 10%, 20%, 30%,40% and 50%, which were compared with the solution-treated one. Microstructure of them was investigated by means of optical microscopy, X-ray diffraction technique and scanning electron microscopy. For mechanical properties investigations, hardness and tensile tests were carried out. Results shows that the cold rolling reduction induced the martensitic transformation (γ→α ́) in the structure of the austenitic stainless steel. With the increase of the rolling reduction, the amount of strain-induced martensite increased gradually. Hardness, ultimate tensile strength and yield strength increased with the incremental rolling reduction in 204C2 stainless steels, while the elongation decreased. At the thickness reduction of 50%, the specimen obtained best strength and hardness. Hardness of 204C2 stain steel reached 679HV. Ultimate tensile strength reached 1721 MPa. Yield strength reached 1496 MPa.


2013 ◽  
Vol 829 ◽  
pp. 583-588 ◽  
Author(s):  
Ali Dalirbod ◽  
Yahya A. Sorkhe ◽  
Hossein Aghajani

Alumina dispersion hardened copper-base composite was fabricated by internal oxidation method. The high temperature tensile fracture of Cu-Al2O3 composite was studied and tensile strengths were determined at different temperatures of 600, 680 and 780 °C. Microstructure was investigated by means of optical microscope and field emission scanning electron microscope (FESEM) with energy dispersive spectroscopy (EDS). Results show that, ultimate tensile strength and yield strength of copper alumina nanocomposite decrease slowly with increasing temperature. The yield strength reaches 119 MPa and ultimate tensile strength reaches 132 MPa at 780 °C. Surface fractography shows a dimple-type fracture on the fracture surface of the tensile tests where dimple size increases with increasing testing temperature and in some regions brittle fracture characteristics could be observed in the fracture surface.


Author(s):  
Mitchell D. Olson ◽  
Wilson Wong ◽  
Michael R. Hill

This paper describes a novel method to determine a two-dimensional map of the triaxial residual stress on a radial-axial plane of interest in a hollow cylindrical body. With the description in hand, we present a simulation to validate the steps of the method. The simulation subject is a welded cylindrical nozzle typical of a nuclear power pressurized water reactor pressurizer; in the weld region, the nozzle inner diameter is roughly 132 mm (5.2 inch) and the wall thickness is roughly 35 mm (1.4 inch). The pressure vessel side of the nozzle is carbon steel (with a thin stainless steel lining), the piping side is austenitic stainless steel, and between the two are weld and buttering deposits of nickel alloy. Weld residual stresses in such nozzles have important effects on crack growth rates in fatigue and stress corrosion cracking, therefore measurements of weld residual stress can help provide inputs for managing aging reactor fleets. Nuclear power plant welds often have large and complex geometry, which has made residual stress measurements difficult, and this work provides a proof of concept for a new experimental technique for measurements on welded nozzles.


2021 ◽  
Vol 2 (12 (110)) ◽  
pp. 22-31
Author(s):  
Agus Widyianto ◽  
Ario Sunar Baskoro ◽  
Gandjar Kiswanto ◽  
Muhamad Fathin Ginanjar Ganeswara

Orbital pipe welding was often used to manufacture piping systems. In orbital pipe welding, a major challenge is the welding torch’s position during the welding process, so that additional methods are needed to overcome these challenges. This paper discusses the influence of welding sequence and welding current on distortion, mechanical properties and metallurgical observations in orbital pipe welding with SS 316L pipe square butt joints. The variation of the orbital pipe welding parameters used is welding current and welding sequence. The welding current used is 100 A, 110 A, and 120 A, while the welding sequence used is one sequence, two sequences, three sequences, and four sequences. The welding results will be analyzed from distortion measurement, mechanical properties test and metallurgical observations. Distortion measurements are made on the pipe before welding and after welding. Testing of mechanical properties includes tensile tests and microhardness tests, while metallurgical observations include macrostructure and microstructural observations. The results show that maximum axial distortion, transverse distortion, ovality, and taper occurred at a welding current of 120 A with four sequences of 445 µm, 300 µm, 195 µm, and 275 µm, respectively. The decrease in ultimate tensile strength is 51 % compared to the base metal’s ultimate tensile strength. Horizontal and vertical microhardness tests show that welding with one sequence produces the greatest microhardness value, but there is a decrease in the microhardness value using welding with two to four sequences. Orbital pipe welding results in different depths of penetration at each pipe position. The largest and smallest depth of penetration was 4.11 mm and 1.60 mm, respectively


2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Juan José Galán ◽  
Nuria Varela-Fernández ◽  
Manuel Ángel Graña-López ◽  
Almudena Filgueira-Vizoso ◽  
Ana García-Diez

The objective of this work was to study the suitability of three types of cast iron for the manufacture of a ship engine: EN-GJS-500-7U for the manufacture of the engine block, EN-GJS-400-15U for the cylinder head and EN-GJL-200 for the liner. Tensile tests were carried out to obtain the ultimate tensile strength (UTS) of each material. The results for the UTS were: 460 MPa for EN-GJS-500-7U, 390 MPa for EN-GJS-400-15U and 170 MPa for EN-GJL-200. Likewise, Brinell-hardness measurements were carried out and the elements present in the materials were determined with spectrometry. Finally, the size of graphite particles in each sample was determined.


Sign in / Sign up

Export Citation Format

Share Document